PASTA: Pathology-Aware MRI to PET Cross-Modal Translation with Diffusion Models
- URL: http://arxiv.org/abs/2405.16942v1
- Date: Mon, 27 May 2024 08:33:24 GMT
- Title: PASTA: Pathology-Aware MRI to PET Cross-Modal Translation with Diffusion Models
- Authors: Yitong Li, Igor Yakushev, Dennis M. Hedderich, Christian Wachinger,
- Abstract summary: We introduce PASTA, a novel pathology-aware image translation framework based on conditional diffusion models.
A cycle exchange consistency and volumetric generation strategy elevate PASTA's capability to produce high-quality 3D PET scans.
For Alzheimer's classification, the performance of synthesized scans improves over MRI by 4%, almost reaching the performance of actual PET.
- Score: 7.6672160690646445
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Positron emission tomography (PET) is a well-established functional imaging technique for diagnosing brain disorders. However, PET's high costs and radiation exposure limit its widespread use. In contrast, magnetic resonance imaging (MRI) does not have these limitations. Although it also captures neurodegenerative changes, MRI is a less sensitive diagnostic tool than PET. To close this gap, we aim to generate synthetic PET from MRI. Herewith, we introduce PASTA, a novel pathology-aware image translation framework based on conditional diffusion models. Compared to the state-of-the-art methods, PASTA excels in preserving both structural and pathological details in the target modality, which is achieved through its highly interactive dual-arm architecture and multi-modal condition integration. A cycle exchange consistency and volumetric generation strategy elevate PASTA's capability to produce high-quality 3D PET scans. Our qualitative and quantitative results confirm that the synthesized PET scans from PASTA not only reach the best quantitative scores but also preserve the pathology correctly. For Alzheimer's classification, the performance of synthesized scans improves over MRI by 4%, almost reaching the performance of actual PET. Code is available at https://github.com/ai-med/PASTA.
Related papers
- Phy-Diff: Physics-guided Hourglass Diffusion Model for Diffusion MRI Synthesis [45.074243735766]
We propose a physics-guided diffusion model to generate high-quality dMRI.
Our model introduces the physical principles of dMRI in the noise evolution in the diffusion process.
Our experiment results show that our method outperforms other state-of-the-art methods.
arXiv Detail & Related papers (2024-06-05T07:09:19Z) - Functional Imaging Constrained Diffusion for Brain PET Synthesis from Structural MRI [5.190302448685122]
We propose a framework for 3D brain PET image synthesis with paired structural MRI as input condition, through a new constrained diffusion model (CDM)
The FICD introduces noise to PET and then progressively removes it with CDM, ensuring high output fidelity throughout a stable training phase.
The CDM learns to predict denoised PET with a functional imaging constraint introduced to ensure voxel-wise alignment between each denoised PET and its ground truth.
arXiv Detail & Related papers (2024-05-03T22:33:46Z) - Three-Dimensional Amyloid-Beta PET Synthesis from Structural MRI with Conditional Generative Adversarial Networks [45.426889188365685]
Alzheimer's Disease hallmarks include amyloid-beta deposits and brain atrophy.
PET is expensive, invasive and exposes patients to ionizing radiation.
MRI is cheaper, non-invasive, and free from ionizing radiation but limited to measuring brain atrophy.
arXiv Detail & Related papers (2024-05-03T14:10:29Z) - Two-Phase Multi-Dose-Level PET Image Reconstruction with Dose Level Awareness [43.45142393436787]
We design a novel two-phase multi-dose-level PET reconstruction algorithm with dose level awareness.
The pre-training phase is devised to explore both fine-grained discriminative features and effective semantic representation.
The SPET prediction phase adopts a coarse prediction network utilizing pre-learned dose level prior to generate preliminary result.
arXiv Detail & Related papers (2024-04-02T01:57:08Z) - Revolutionizing Disease Diagnosis with simultaneous functional PET/MR and Deeply Integrated Brain Metabolic, Hemodynamic, and Perfusion Networks [40.986069119392944]
We propose MX-ARM, a multimodal MiXture-of-experts Alignment Reconstruction and Model.
It is modality detachable and exchangeable, allocating different multi-layer perceptrons dynamically ("mixture of experts") through learnable weights to learn respective representations from different modalities.
arXiv Detail & Related papers (2024-03-29T08:47:49Z) - Amyloid-Beta Axial Plane PET Synthesis from Structural MRI: An Image
Translation Approach for Screening Alzheimer's Disease [49.62561299282114]
An image translation model is implemented to produce synthetic amyloid-beta PET images from structural MRI that are quantitatively accurate.
We found that the synthetic PET images could be produced with a high degree of similarity to truth in terms of shape, contrast and overall high SSIM and PSNR.
arXiv Detail & Related papers (2023-09-01T16:26:42Z) - Contrastive Diffusion Model with Auxiliary Guidance for Coarse-to-Fine
PET Reconstruction [62.29541106695824]
This paper presents a coarse-to-fine PET reconstruction framework that consists of a coarse prediction module (CPM) and an iterative refinement module (IRM)
By delegating most of the computational overhead to the CPM, the overall sampling speed of our method can be significantly improved.
Two additional strategies, i.e., an auxiliary guidance strategy and a contrastive diffusion strategy, are proposed and integrated into the reconstruction process.
arXiv Detail & Related papers (2023-08-20T04:10:36Z) - Synthesizing PET images from High-field and Ultra-high-field MR images Using Joint Diffusion Attention Model [18.106861006893524]
PET scanning is costly and involves radioactive exposure, resulting in a lack of PET.
Ultra-high-field imaging has proven valuable in both clinical and academic settings.
We propose a method for synthetic PET from high-filed MRI and ultra-high-field MRI.
arXiv Detail & Related papers (2023-05-06T02:41:03Z) - A resource-efficient deep learning framework for low-dose brain PET
image reconstruction and analysis [13.713286047709982]
We propose a resource-efficient deep learning framework for L-PET reconstruction and analysis, referred to as transGAN-SDAM.
The transGAN generates higher quality F-PET images, and then the SDAM integrates the spatial information of a sequence of generated F-PET slices to synthesize whole-brain F-PET images.
arXiv Detail & Related papers (2022-02-14T08:40:19Z) - Synthesizing Multi-Tracer PET Images for Alzheimer's Disease Patients
using a 3D Unified Anatomy-aware Cyclic Adversarial Network [9.406405460188818]
Positron Emission Tomography (PET) is an important tool for studying Alzheimer's disease (AD)
Previous works on medical image synthesis focus on one-to-one fixed domain translations, and cannot simultaneously learn the feature from multi-tracer domains.
We propose a 3D unified anatomy-aware cyclic adversarial network (UCAN) for translating multi-tracer PET volumes with one unified generative model.
arXiv Detail & Related papers (2021-07-12T15:10:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.