Functional Imaging Constrained Diffusion for Brain PET Synthesis from Structural MRI
- URL: http://arxiv.org/abs/2405.02504v3
- Date: Tue, 12 Nov 2024 00:21:00 GMT
- Title: Functional Imaging Constrained Diffusion for Brain PET Synthesis from Structural MRI
- Authors: Minhui Yu, Mengqi Wu, Ling Yue, Andrea Bozoki, Mingxia Liu,
- Abstract summary: We propose a framework for 3D brain PET image synthesis with paired structural MRI as input condition, through a new constrained diffusion model (CDM)
The FICD introduces noise to PET and then progressively removes it with CDM, ensuring high output fidelity throughout a stable training phase.
The CDM learns to predict denoised PET with a functional imaging constraint introduced to ensure voxel-wise alignment between each denoised PET and its ground truth.
- Score: 5.190302448685122
- License:
- Abstract: Magnetic resonance imaging (MRI) and positron emission tomography (PET) are increasingly used in multimodal analysis of neurodegenerative disorders. While MRI is broadly utilized in clinical settings, PET is less accessible. Many studies have attempted to use deep generative models to synthesize PET from MRI scans. However, they often suffer from unstable training and inadequately preserve brain functional information conveyed by PET. To this end, we propose a functional imaging constrained diffusion (FICD) framework for 3D brain PET image synthesis with paired structural MRI as input condition, through a new constrained diffusion model (CDM). The FICD introduces noise to PET and then progressively removes it with CDM, ensuring high output fidelity throughout a stable training phase. The CDM learns to predict denoised PET with a functional imaging constraint introduced to ensure voxel-wise alignment between each denoised PET and its ground truth. Quantitative and qualitative analyses conducted on 293 subjects with paired T1-weighted MRI and 18F-fluorodeoxyglucose (FDG)-PET scans suggest that FICD achieves superior performance in generating FDG-PET data compared to state-of-the-art methods. We further validate the effectiveness of the proposed FICD on data from a total of 1,262 subjects through three downstream tasks, with experimental results suggesting its utility and generalizability.
Related papers
- Synthesizing beta-amyloid PET images from T1-weighted Structural MRI: A Preliminary Study [6.4038303148510005]
We propose an approach to utilize 3D diffusion models to synthesize A$beta$-PET images from T1-weighted MRI scans.
Our method generates high-quality A$beta$-PET images for cognitive normal cases, although it is less effective for mild cognitive impairment (MCI) patients.
arXiv Detail & Related papers (2024-09-26T20:51:59Z) - PASTA: Pathology-Aware MRI to PET Cross-Modal Translation with Diffusion Models [7.6672160690646445]
We introduce PASTA, a novel pathology-aware image translation framework based on conditional diffusion models.
A cycle exchange consistency and volumetric generation strategy elevate PASTA's capability to produce high-quality 3D PET scans.
For Alzheimer's classification, the performance of synthesized scans improves over MRI by 4%, almost reaching the performance of actual PET.
arXiv Detail & Related papers (2024-05-27T08:33:24Z) - Three-Dimensional Amyloid-Beta PET Synthesis from Structural MRI with Conditional Generative Adversarial Networks [45.426889188365685]
Alzheimer's Disease hallmarks include amyloid-beta deposits and brain atrophy.
PET is expensive, invasive and exposes patients to ionizing radiation.
MRI is cheaper, non-invasive, and free from ionizing radiation but limited to measuring brain atrophy.
arXiv Detail & Related papers (2024-05-03T14:10:29Z) - Super-resolution of biomedical volumes with 2D supervision [84.5255884646906]
Masked slice diffusion for super-resolution exploits the inherent equivalence in the data-generating distribution across all spatial dimensions of biological specimens.
We focus on the application of SliceR to stimulated histology (SRH), characterized by its rapid acquisition of high-resolution 2D images but slow and costly optical z-sectioning.
arXiv Detail & Related papers (2024-04-15T02:41:55Z) - Amyloid-Beta Axial Plane PET Synthesis from Structural MRI: An Image
Translation Approach for Screening Alzheimer's Disease [49.62561299282114]
An image translation model is implemented to produce synthetic amyloid-beta PET images from structural MRI that are quantitatively accurate.
We found that the synthetic PET images could be produced with a high degree of similarity to truth in terms of shape, contrast and overall high SSIM and PSNR.
arXiv Detail & Related papers (2023-09-01T16:26:42Z) - Contrastive Diffusion Model with Auxiliary Guidance for Coarse-to-Fine
PET Reconstruction [62.29541106695824]
This paper presents a coarse-to-fine PET reconstruction framework that consists of a coarse prediction module (CPM) and an iterative refinement module (IRM)
By delegating most of the computational overhead to the CPM, the overall sampling speed of our method can be significantly improved.
Two additional strategies, i.e., an auxiliary guidance strategy and a contrastive diffusion strategy, are proposed and integrated into the reconstruction process.
arXiv Detail & Related papers (2023-08-20T04:10:36Z) - Synthesizing PET images from High-field and Ultra-high-field MR images Using Joint Diffusion Attention Model [18.106861006893524]
PET scanning is costly and involves radioactive exposure, resulting in a lack of PET.
Ultra-high-field imaging has proven valuable in both clinical and academic settings.
We propose a method for synthetic PET from high-filed MRI and ultra-high-field MRI.
arXiv Detail & Related papers (2023-05-06T02:41:03Z) - Brain MRI-to-PET Synthesis using 3D Convolutional Attention Networks [10.095428964324874]
Positron emission tomography (PET) with radiolabeled water (15O-water) is considered the gold-standard for the measurement of cerebral blood flow (CBF) in humans.
PET imaging is not widely available because of its prohibitive costs and use of short-lived radiopharmaceutical tracers that typically require onsite cyclotron production.
This study presents a convolutional encoder-decoder network with attention mechanisms to predict gold-standard 15O-water PET CBF from multi-sequence MRI scans.
arXiv Detail & Related papers (2022-11-22T08:25:44Z) - Synthetic PET via Domain Translation of 3D MRI [1.0052333944678682]
We use a dataset of 56 $18$F-FDG-PET/MRI exams to train a 3D residual UNet to predict physiologic PET uptake from whole-body T1-weighted MRI.
The predicted PET images are forward projected to produce synthetic PET time-of-flight sinograms that can be used with vendor-provided PET reconstruction algorithms.
arXiv Detail & Related papers (2022-06-11T21:32:40Z) - ShuffleUNet: Super resolution of diffusion-weighted MRIs using deep
learning [47.68307909984442]
Single Image Super-Resolution (SISR) is a technique aimed to obtain high-resolution (HR) details from one single low-resolution input image.
Deep learning extracts prior knowledge from big datasets and produces superior MRI images from the low-resolution counterparts.
arXiv Detail & Related papers (2021-02-25T14:52:23Z) - Lesion Mask-based Simultaneous Synthesis of Anatomic and MolecularMR
Images using a GAN [59.60954255038335]
The proposed framework consists of a stretch-out up-sampling module, a brain atlas encoder, a segmentation consistency module, and multi-scale label-wise discriminators.
Experiments on real clinical data demonstrate that the proposed model can perform significantly better than the state-of-the-art synthesis methods.
arXiv Detail & Related papers (2020-06-26T02:50:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.