論文の概要: A Correlation- and Mean-Aware Loss Function and Benchmarking Framework to Improve GAN-based Tabular Data Synthesis
- arxiv url: http://arxiv.org/abs/2405.16971v1
- Date: Mon, 27 May 2024 09:08:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-28 16:11:45.370729
- Title: A Correlation- and Mean-Aware Loss Function and Benchmarking Framework to Improve GAN-based Tabular Data Synthesis
- Title(参考訳): GANに基づく語彙データ合成改善のための相関・平均損失関数とベンチマークフレームワーク
- Authors: Minh H. Vu, Daniel Edler, Carl Wibom, Tommy Löfstedt, Beatrice Melin, Martin Rosvall,
- Abstract要約: 本稿では,GAN(Generative Adversarial Network)のための新しい相関と平均認識損失関数を提案する。
提案した損失関数は、真のデータ分布をキャプチャする既存の手法よりも統計的に有意な改善を示す。
ベンチマークフレームワークは、強化された合成データ品質により、下流の機械学習タスクのパフォーマンスが向上することを示している。
- 参考スコア(独自算出の注目度): 2.2451409468083114
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Advancements in science rely on data sharing. In medicine, where personal data are often involved, synthetic tabular data generated by generative adversarial networks (GANs) offer a promising avenue. However, existing GANs struggle to capture the complexities of real-world tabular data, which often contain a mix of continuous and categorical variables with potential imbalances and dependencies. We propose a novel correlation- and mean-aware loss function designed to address these challenges as a regularizer for GANs. To ensure a rigorous evaluation, we establish a comprehensive benchmarking framework using ten real-world datasets and eight established tabular GAN baselines. The proposed loss function demonstrates statistically significant improvements over existing methods in capturing the true data distribution, significantly enhancing the quality of synthetic data generated with GANs. The benchmarking framework shows that the enhanced synthetic data quality leads to improved performance in downstream machine learning (ML) tasks, ultimately paving the way for easier data sharing.
- Abstract(参考訳): 科学の進歩はデータの共有に依存している。
医療において、個人データが頻繁に関わる場合、生成的敵ネットワーク(GAN)によって生成された合成表型データは、有望な道を提供する。
しかし、既存のGANは、潜在的な不均衡と依存関係を持つ連続変数とカテゴリー変数の混合を含む、現実世界の表データの複雑さを捉えるのに苦労している。
本稿では,GANの正則化としてこれらの課題に対処するために,新しい相関・平均認識損失関数を提案する。
厳密な評価を確保するため,実世界の10のデータセットと8つの確立された表状GANベースラインを用いた総合的なベンチマークフレームワークを構築した。
提案した損失関数は、真のデータ分布を捕捉する既存の手法に比べて統計的に有意な改善を示し、GANで生成された合成データの品質を著しく向上させる。
ベンチマークフレームワークは、強化された合成データ品質により、ダウンストリーム機械学習(ML)タスクのパフォーマンスが向上し、最終的にはデータの共有が容易になることを示している。
関連論文リスト
- Not All LLM-Generated Data Are Equal: Rethinking Data Weighting in Text Classification [7.357494019212501]
本研究では,合成データと実世界の分布を協調する効率的な重み付け手法を提案する。
複数のテキスト分類タスクにおいて,提案手法の有効性を実証的に評価した。
論文 参考訳(メタデータ) (2024-10-28T20:53:49Z) - Unveiling the Flaws: Exploring Imperfections in Synthetic Data and Mitigation Strategies for Large Language Models [89.88010750772413]
大規模言語モデル(LLM)の学習における高品質なデータ不足問題に対する解決法として,合成データを提案する。
我々の研究は、Q-A(Q-A)ペア、一般的な合成データに関連するこれらの特定の欠陥を掘り下げ、これらの欠陥を軽減するための未学習技術に基づく方法を提案する。
我々の研究は、より堅牢で効率的なLLMトレーニングを促進することを目的として、合成データの効果的な利用に関する重要な洞察を得た。
論文 参考訳(メタデータ) (2024-06-18T08:38:59Z) - OCDB: Revisiting Causal Discovery with a Comprehensive Benchmark and Evaluation Framework [21.87740178652843]
因果発見は透明性と信頼性を改善するための有望なアプローチを提供する。
本稿では,因果構造と因果効果の違いを評価するための指標を用いたフレキシブルな評価フレームワークを提案する。
実データに基づくOpen Causal Discovery Benchmark (OCDB)を導入し、公正な比較を促進し、アルゴリズムの最適化を促進する。
論文 参考訳(メタデータ) (2024-06-07T03:09:22Z) - On the Equivalency, Substitutability, and Flexibility of Synthetic Data [9.459709213597707]
本研究では,合成データと実世界のデータとの等価性,実データに対する合成データの置換可能性,合成データ生成装置の柔軟性について検討する。
以上の結果から, 合成データによりモデル性能が向上するだけでなく, 実データへの置換性も向上し, 性能損失の60%から80%が置換可能であることが示唆された。
論文 参考訳(メタデータ) (2024-03-24T17:21:32Z) - SMaRt: Improving GANs with Score Matching Regularity [94.81046452865583]
生成的敵ネットワーク(GAN)は通常、基礎となる多様体が複雑である非常に多様なデータから学ぶのに苦労する。
スコアマッチングは、生成したデータポイントを実データ多様体へ持続的にプッシュする能力のおかげで、この問題に対する有望な解決策であることを示す。
スコアマッチング規則性(SMaRt)を用いたGANの最適化を提案する。
論文 参考訳(メタデータ) (2023-11-30T03:05:14Z) - Reimagining Synthetic Tabular Data Generation through Data-Centric AI: A
Comprehensive Benchmark [56.8042116967334]
合成データは、機械学習モデルのトレーニングの代替となる。
合成データが現実世界データの複雑なニュアンスを反映することを保証することは、難しい作業です。
本稿では,データ中心型AI技術の統合による合成データ生成プロセスのガイドの可能性について検討する。
論文 参考訳(メタデータ) (2023-10-25T20:32:02Z) - PS-FedGAN: An Efficient Federated Learning Framework Based on Partially
Shared Generative Adversarial Networks For Data Privacy [56.347786940414935]
分散計算のための効果的な学習パラダイムとして、フェデレートラーニング(FL)が登場した。
本研究は,部分的なGANモデル共有のみを必要とする新しいFLフレームワークを提案する。
PS-FedGANと名付けられたこの新しいフレームワークは、異種データ分散に対処するためのGANリリースおよびトレーニングメカニズムを強化する。
論文 参考訳(メタデータ) (2023-05-19T05:39:40Z) - Synthetic data, real errors: how (not) to publish and use synthetic data [86.65594304109567]
生成過程が下流MLタスクにどのように影響するかを示す。
本稿では、生成プロセスモデルパラメータの後方分布を近似するために、Deep Generative Ensemble (DGE)を導入する。
論文 参考訳(メタデータ) (2023-05-16T07:30:29Z) - GAN-based Tabular Data Generator for Constructing Synopsis in
Approximate Query Processing: Challenges and Solutions [0.0]
Approximate Query Processing (AQP) は、データ(シノプシス)の要約に基づいて、集約されたクエリに近似した回答を提供する技術である。
本研究では,AQPを用いて合成構築を行うことのできる表データ生成におけるGAN(Generative Adversarial Networks)の新規活用について検討する。
以上の結果から,データ駆動システムにおけるAQPの効率と有効性に変化をもたらす可能性が示唆された。
論文 参考訳(メタデータ) (2022-12-18T05:11:04Z) - CAFE: Learning to Condense Dataset by Aligning Features [72.99394941348757]
本稿ではCAFE(Aligning features)によるCondenseデータセットの新しいスキームを提案する。
このアプローチの核心は、さまざまなスケールにわたる実データと合成データから機能を整合させる効果的な戦略です。
提案したCAFEを様々なデータセットで検証し,概ね最先端技術であることを示す。
論文 参考訳(メタデータ) (2022-03-03T05:58:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。