Graph Condensation for Open-World Graph Learning
- URL: http://arxiv.org/abs/2405.17003v2
- Date: Wed, 12 Jun 2024 13:57:58 GMT
- Title: Graph Condensation for Open-World Graph Learning
- Authors: Xinyi Gao, Tong Chen, Wentao Zhang, Yayong Li, Xiangguo Sun, Hongzhi Yin,
- Abstract summary: Graph condensation (GC) has emerged as a promising acceleration solution for efficiently training graph neural networks (GNNs)
Existing GC methods are limited to aligning the condensed graph with merely the observed static graph distribution.
In real-world scenarios, however, graphs are dynamic and constantly evolving, with new nodes and edges being continually integrated.
We propose OpenGC, a robust GC framework that integrates structure-aware distribution shift to simulate evolving graph patterns.
- Score: 48.38802327346445
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The burgeoning volume of graph data presents significant computational challenges in training graph neural networks (GNNs), critically impeding their efficiency in various applications. To tackle this challenge, graph condensation (GC) has emerged as a promising acceleration solution, focusing on the synthesis of a compact yet representative graph for efficiently training GNNs while retaining performance. Despite the potential to promote scalable use of GNNs, existing GC methods are limited to aligning the condensed graph with merely the observed static graph distribution. This limitation significantly restricts the generalization capacity of condensed graphs, particularly in adapting to dynamic distribution changes. In real-world scenarios, however, graphs are dynamic and constantly evolving, with new nodes and edges being continually integrated. Consequently, due to the limited generalization capacity of condensed graphs, applications that employ GC for efficient GNN training end up with sub-optimal GNNs when confronted with evolving graph structures and distributions in dynamic real-world situations. To overcome this issue, we propose open-world graph condensation (OpenGC), a robust GC framework that integrates structure-aware distribution shift to simulate evolving graph patterns and exploit the temporal environments for invariance condensation. This approach is designed to extract temporal invariant patterns from the original graph, thereby enhancing the generalization capabilities of the condensed graph and, subsequently, the GNNs trained on it. Extensive experiments on both real-world and synthetic evolving graphs demonstrate that OpenGC outperforms state-of-the-art (SOTA) GC methods in adapting to dynamic changes in open-world graph environments.
Related papers
- RobGC: Towards Robust Graph Condensation [61.259453496191696]
Graph neural networks (GNNs) have attracted widespread attention for their impressive capability of graph representation learning.
However, the increasing prevalence of large-scale graphs presents a significant challenge for GNN training due to their computational demands.
We propose graph condensation (GC) to generate an informative compact graph that enables efficient training of GNNs while retaining performance.
arXiv Detail & Related papers (2024-06-19T04:14:57Z) - A Scalable and Effective Alternative to Graph Transformers [19.018320937729264]
Graph Transformers (GTs) were introduced, utilizing self-attention mechanism to model pairwise node relationships.
GTs suffer from complexity w.r.t. the number of nodes in the graph, hindering their applicability to large graphs.
We present Graph-Enhanced Contextual Operator (GECO), a scalable and effective alternative to GTs.
arXiv Detail & Related papers (2024-06-17T19:57:34Z) - Spectral Greedy Coresets for Graph Neural Networks [61.24300262316091]
The ubiquity of large-scale graphs in node-classification tasks hinders the real-world applications of Graph Neural Networks (GNNs)
This paper studies graph coresets for GNNs and avoids the interdependence issue by selecting ego-graphs based on their spectral embeddings.
Our spectral greedy graph coreset (SGGC) scales to graphs with millions of nodes, obviates the need for model pre-training, and applies to low-homophily graphs.
arXiv Detail & Related papers (2024-05-27T17:52:12Z) - Simple Graph Condensation [30.85754566420301]
Graph condensation involves tuning Graph Neural Networks (GNNs) on a small condensed graph for use on a large-scale original graph.
We introduce the Simple Graph Condensation (SimGC) framework, which aligns the condensed graph with the original graph from the input layer to the prediction layer.
SimGC achieves a significant speedup of up to 10 times compared to existing graph condensation methods.
arXiv Detail & Related papers (2024-03-22T05:04:48Z) - Disentangled Condensation for Large-scale Graphs [31.781721873508978]
Graph condensation has emerged as an intriguing technique to save the expensive training costs of Graph Neural Networks (GNNs)
We propose to disentangle the condensation process into a two-stage GNN-free paradigm, independently condensing nodes and generating edges.
This simple yet effective approach achieves at least 10 times faster than state-of-the-art methods with comparable accuracy on medium-scale graphs.
arXiv Detail & Related papers (2024-01-18T09:59:00Z) - Graph Generative Model for Benchmarking Graph Neural Networks [73.11514658000547]
We introduce a novel graph generative model that learns and reproduces the distribution of real-world graphs in a privacy-controlled way.
Our model can successfully generate privacy-controlled, synthetic substitutes of large-scale real-world graphs that can be effectively used to benchmark GNN models.
arXiv Detail & Related papers (2022-07-10T06:42:02Z) - Graph Condensation via Receptive Field Distribution Matching [61.71711656856704]
This paper focuses on creating a small graph to represent the original graph, so that GNNs trained on the size-reduced graph can make accurate predictions.
We view the original graph as a distribution of receptive fields and aim to synthesize a small graph whose receptive fields share a similar distribution.
arXiv Detail & Related papers (2022-06-28T02:10:05Z) - ACE-HGNN: Adaptive Curvature Exploration Hyperbolic Graph Neural Network [72.16255675586089]
We propose an Adaptive Curvature Exploration Hyperbolic Graph NeuralNetwork named ACE-HGNN to adaptively learn the optimal curvature according to the input graph and downstream tasks.
Experiments on multiple real-world graph datasets demonstrate a significant and consistent performance improvement in model quality with competitive performance and good generalization ability.
arXiv Detail & Related papers (2021-10-15T07:18:57Z) - Self-Constructing Graph Convolutional Networks for Semantic Labeling [23.623276007011373]
We propose a novel architecture called the Self-Constructing Graph (SCG), which makes use of learnable latent variables to generate embeddings.
SCG can automatically obtain optimized non-local context graphs from complex-shaped objects in aerial imagery.
We demonstrate the effectiveness and flexibility of the proposed SCG on the publicly available ISPRS Vaihingen dataset.
arXiv Detail & Related papers (2020-03-15T21:55:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.