Efficient Graph Condensation via Gaussian Process
- URL: http://arxiv.org/abs/2501.02565v1
- Date: Sun, 05 Jan 2025 14:43:07 GMT
- Title: Efficient Graph Condensation via Gaussian Process
- Authors: Lin Wang, Qing Li,
- Abstract summary: Graph condensation reduces the size of large graphs while preserving performance.
Existing methods often rely on bi-level optimization, requiring extensive GNN training and limiting their scalability.
This paper proposes Graph Condensation via Gaussian Process (GCGP), a novel and computationally efficient approach to graph condensation.
- Score: 11.304327316816561
- License:
- Abstract: Graph condensation reduces the size of large graphs while preserving performance, addressing the scalability challenges of Graph Neural Networks caused by computational inefficiencies on large datasets. Existing methods often rely on bi-level optimization, requiring extensive GNN training and limiting their scalability. To address these issues, this paper proposes Graph Condensation via Gaussian Process (GCGP), a novel and computationally efficient approach to graph condensation. GCGP utilizes a Gaussian Process (GP), with the condensed graph serving as observations, to estimate the posterior distribution of predictions. This approach eliminates the need for the iterative and resource-intensive training typically required by GNNs. To enhance the capability of the GCGP in capturing dependencies between function values, we derive a specialized covariance function that incorporates structural information. This covariance function broadens the receptive field of input nodes by local neighborhood aggregation, thereby facilitating the representation of intricate dependencies within the nodes. To address the challenge of optimizing binary structural information in condensed graphs, Concrete random variables are utilized to approximate the binary adjacency matrix in a continuous counterpart. This relaxation process allows the adjacency matrix to be represented in a differentiable form, enabling the application of gradient-based optimization techniques to discrete graph structures. Experimental results show that the proposed GCGP method efficiently condenses large-scale graph data while preserving predictive performance, addressing the scalability and efficiency challenges. The implementation of our method is publicly available at https://github.com/WANGLin0126/GCGP.
Related papers
- Contrastive Graph Condensation: Advancing Data Versatility through Self-Supervised Learning [47.74244053386216]
Graph condensation is a promising solution to synthesize a compact, substitute graph of the large-scale original graph.
We introduce Contrastive Graph Condensation (CTGC), which adopts a self-supervised surrogate task to extract critical, causal information from the original graph.
CTGC excels in handling various downstream tasks with a limited number of labels, consistently outperforming state-of-the-art GC methods.
arXiv Detail & Related papers (2024-11-26T03:01:22Z) - Scalable Graph Compressed Convolutions [68.85227170390864]
We propose a differentiable method that applies permutations to calibrate input graphs for Euclidean convolution.
Based on the graph calibration, we propose the Compressed Convolution Network (CoCN) for hierarchical graph representation learning.
arXiv Detail & Related papers (2024-07-26T03:14:13Z) - Amplify Graph Learning for Recommendation via Sparsity Completion [16.32861024767423]
Graph learning models have been widely deployed in collaborative filtering (CF) based recommendation systems.
Due to the issue of data sparsity, the graph structure of the original input lacks potential positive preference edges.
We propose an Amplify Graph Learning framework based on Sparsity Completion (called AGL-SC)
arXiv Detail & Related papers (2024-06-27T08:26:20Z) - Efficient Graph Similarity Computation with Alignment Regularization [7.143879014059894]
Graph similarity computation (GSC) is a learning-based prediction task using Graph Neural Networks (GNNs)
We show that high-quality learning can be attained with a simple yet powerful regularization technique, which we call the Alignment Regularization (AReg)
In the inference stage, the graph-level representations learned by the GNN encoder are directly used to compute the similarity score without using AReg again to speed up inference.
arXiv Detail & Related papers (2024-06-21T07:37:28Z) - Rethinking and Accelerating Graph Condensation: A Training-Free Approach with Class Partition [49.41718583061147]
Graph condensation is a data-centric solution to replace the large graph with a small yet informative condensed graph.
Existing GC methods suffer from intricate optimization processes, necessitating excessive computing resources and training time.
We propose a training-free GC framework termed Class-partitioned Graph Condensation (CGC)
CGC condenses the Ogbn-products graph within 30 seconds, achieving a speedup ranging from $102$X to $104$X and increasing accuracy by up to 4.2%.
arXiv Detail & Related papers (2024-05-22T14:57:09Z) - Fast Graph Condensation with Structure-based Neural Tangent Kernel [30.098666399404287]
We propose a novel dataset condensation framework (GC-SNTK) for graph-structured data.
A Structure-based Neural Tangent Kernel (SNTK) is developed to capture the topology of graph and serves as the kernel function in KRR paradigm.
Experiments demonstrate the effectiveness of our proposed model in accelerating graph condensation while maintaining high prediction performance.
arXiv Detail & Related papers (2023-10-17T07:25:59Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
We introduce a novel all-pair message passing scheme for efficiently propagating node signals between arbitrary nodes.
The efficient computation is enabled by a kernerlized Gumbel-Softmax operator.
Experiments demonstrate the promising efficacy of the method in various tasks including node classification on graphs.
arXiv Detail & Related papers (2023-06-14T09:21:15Z) - Comprehensive Graph Gradual Pruning for Sparse Training in Graph Neural
Networks [52.566735716983956]
We propose a graph gradual pruning framework termed CGP to dynamically prune GNNs.
Unlike LTH-based methods, the proposed CGP approach requires no re-training, which significantly reduces the computation costs.
Our proposed strategy greatly improves both training and inference efficiency while matching or even exceeding the accuracy of existing methods.
arXiv Detail & Related papers (2022-07-18T14:23:31Z) - Robust Optimization as Data Augmentation for Large-scale Graphs [117.2376815614148]
We propose FLAG (Free Large-scale Adversarial Augmentation on Graphs), which iteratively augments node features with gradient-based adversarial perturbations during training.
FLAG is a general-purpose approach for graph data, which universally works in node classification, link prediction, and graph classification tasks.
arXiv Detail & Related papers (2020-10-19T21:51:47Z) - Block-Approximated Exponential Random Graphs [77.4792558024487]
An important challenge in the field of exponential random graphs (ERGs) is the fitting of non-trivial ERGs on large graphs.
We propose an approximative framework to such non-trivial ERGs that result in dyadic independence (i.e., edge independent) distributions.
Our methods are scalable to sparse graphs consisting of millions of nodes.
arXiv Detail & Related papers (2020-02-14T11:42:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.