BDC-Occ: Binarized Deep Convolution Unit For Binarized Occupancy Network
- URL: http://arxiv.org/abs/2405.17037v1
- Date: Mon, 27 May 2024 10:44:05 GMT
- Title: BDC-Occ: Binarized Deep Convolution Unit For Binarized Occupancy Network
- Authors: Zongkai Zhang, Zidong Xu, Wenming Yang, Qingmin Liao, Jing-Hao Xue,
- Abstract summary: Existing 3D occupancy networks demand significant hardware resources, hindering the deployment of edge devices.
We propose a novel binarized deep convolution (BDC) unit that effectively enhances performance while increasing the number of binarized convolutional layers.
Our BDC-Occ model is created by applying the proposed BDC unit to binarize the existing 3D occupancy networks.
- Score: 55.21288428359509
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing 3D occupancy networks demand significant hardware resources, hindering the deployment of edge devices. Binarized Neural Networks (BNN) offer substantially reduced computational and memory requirements. However, their performance decreases notably compared to full-precision networks. Moreover, it is challenging to enhance the performance of binarized models by increasing the number of binarized convolutional layers, which limits their practicability for 3D occupancy prediction. To bridge these gaps, we propose a novel binarized deep convolution (BDC) unit that effectively enhances performance while increasing the number of binarized convolutional layers. Firstly, through theoretical analysis, we demonstrate that 1 \times 1 binarized convolutions introduce minimal binarization errors. Therefore, additional binarized convolutional layers are constrained to 1 \times 1 in the BDC unit. Secondly, we introduce the per-channel weight branch to mitigate the impact of binarization errors from unimportant channel features on the performance of binarized models, thereby improving performance while increasing the number of binarized convolutional layers. Furthermore, we decompose the 3D occupancy network into four convolutional modules and utilize the proposed BDC unit to binarize these modules. Our BDC-Occ model is created by applying the proposed BDC unit to binarize the existing 3D occupancy networks. Comprehensive quantitative and qualitative experiments demonstrate that the proposed BDC-Occ is the state-of-the-art binarized 3D occupancy network algorithm.
Related papers
- BiDense: Binarization for Dense Prediction [62.70804353158387]
BiDense is a generalized binary neural network (BNN) designed for efficient and accurate dense prediction tasks.
BiDense incorporates two key techniques: the Distribution-adaptive Binarizer (DAB) and the Channel-adaptive Full-precision Bypass (CFB)
arXiv Detail & Related papers (2024-11-15T16:46:04Z) - Input Layer Binarization with Bit-Plane Encoding [4.872439392746007]
We present a new method to binarize the first layer using directly the 8-bit representation of input data.
The resulting model is fully binarized and our first layer binarization approach is model independent.
arXiv Detail & Related papers (2023-05-04T14:49:07Z) - BiFSMN: Binary Neural Network for Keyword Spotting [47.46397208920726]
BiFSMN is an accurate and extreme-efficient binary neural network for KWS.
We show that BiFSMN can achieve an impressive 22.3x speedup and 15.5x storage-saving on real-world edge hardware.
arXiv Detail & Related papers (2022-02-14T05:16:53Z) - Sub-bit Neural Networks: Learning to Compress and Accelerate Binary
Neural Networks [72.81092567651395]
Sub-bit Neural Networks (SNNs) are a new type of binary quantization design tailored to compress and accelerate BNNs.
SNNs are trained with a kernel-aware optimization framework, which exploits binary quantization in the fine-grained convolutional kernel space.
Experiments on visual recognition benchmarks and the hardware deployment on FPGA validate the great potentials of SNNs.
arXiv Detail & Related papers (2021-10-18T11:30:29Z) - Distribution-sensitive Information Retention for Accurate Binary Neural
Network [49.971345958676196]
We present a novel Distribution-sensitive Information Retention Network (DIR-Net) to retain the information of the forward activations and backward gradients.
Our DIR-Net consistently outperforms the SOTA binarization approaches under mainstream and compact architectures.
We conduct our DIR-Net on real-world resource-limited devices which achieves 11.1 times storage saving and 5.4 times speedup.
arXiv Detail & Related papers (2021-09-25T10:59:39Z) - Multi-Slice Dense-Sparse Learning for Efficient Liver and Tumor
Segmentation [4.150096314396549]
Deep convolutional neural network (DCNNs) has obtained tremendous success in 2D and 3D medical image segmentation.
We propose a novel dense-sparse training flow from a data perspective, in which, densely adjacent slices and sparsely adjacent slices are extracted as inputs for regularizing DCNNs.
We also design a 2.5D light-weight nnU-Net from a network perspective, in which, depthwise separable convolutions are adopted to improve the efficiency.
arXiv Detail & Related papers (2021-08-15T15:29:48Z) - Binary DAD-Net: Binarized Driveable Area Detection Network for
Autonomous Driving [94.40107679615618]
This paper proposes a novel binarized driveable area detection network (binary DAD-Net)
It uses only binary weights and activations in the encoder, the bottleneck, and the decoder part.
It outperforms state-of-the-art semantic segmentation networks on public datasets.
arXiv Detail & Related papers (2020-06-15T07:09:01Z) - Systolic Tensor Array: An Efficient Structured-Sparse GEMM Accelerator
for Mobile CNN Inference [16.812184391068786]
Convolutional neural network (CNN) inference on mobile devices demands efficient hardware acceleration.
systolic array (SA) is a pipelined 2D array of processing elements (PEs)
We describe two significant improvements to the traditional SA architecture, to specifically optimize for CNN inference.
arXiv Detail & Related papers (2020-05-16T20:47:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.