Multi-Slice Dense-Sparse Learning for Efficient Liver and Tumor
Segmentation
- URL: http://arxiv.org/abs/2108.06761v1
- Date: Sun, 15 Aug 2021 15:29:48 GMT
- Title: Multi-Slice Dense-Sparse Learning for Efficient Liver and Tumor
Segmentation
- Authors: Ziyuan Zhao, Zeyu Ma, Yanjie Liu, Zeng Zeng, Pierce KH Chow
- Abstract summary: Deep convolutional neural network (DCNNs) has obtained tremendous success in 2D and 3D medical image segmentation.
We propose a novel dense-sparse training flow from a data perspective, in which, densely adjacent slices and sparsely adjacent slices are extracted as inputs for regularizing DCNNs.
We also design a 2.5D light-weight nnU-Net from a network perspective, in which, depthwise separable convolutions are adopted to improve the efficiency.
- Score: 4.150096314396549
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate automatic liver and tumor segmentation plays a vital role in
treatment planning and disease monitoring. Recently, deep convolutional neural
network (DCNNs) has obtained tremendous success in 2D and 3D medical image
segmentation. However, 2D DCNNs cannot fully leverage the inter-slice
information, while 3D DCNNs are computationally expensive and memory intensive.
To address these issues, we first propose a novel dense-sparse training flow
from a data perspective, in which, densely adjacent slices and sparsely
adjacent slices are extracted as inputs for regularizing DCNNs, thereby
improving the model performance. Moreover, we design a 2.5D light-weight
nnU-Net from a network perspective, in which, depthwise separable convolutions
are adopted to improve the efficiency. Extensive experiments on the LiTS
dataset have demonstrated the superiority of the proposed method.
Related papers
- Self-supervised learning via inter-modal reconstruction and feature
projection networks for label-efficient 3D-to-2D segmentation [4.5206601127476445]
We propose a novel convolutional neural network (CNN) and self-supervised learning (SSL) method for label-efficient 3D-to-2D segmentation.
Results on different datasets demonstrate that the proposed CNN significantly improves the state of the art in scenarios with limited labeled data by up to 8% in Dice score.
arXiv Detail & Related papers (2023-07-06T14:16:25Z) - UNETR++: Delving into Efficient and Accurate 3D Medical Image Segmentation [93.88170217725805]
We propose a 3D medical image segmentation approach, named UNETR++, that offers both high-quality segmentation masks as well as efficiency in terms of parameters, compute cost, and inference speed.
The core of our design is the introduction of a novel efficient paired attention (EPA) block that efficiently learns spatial and channel-wise discriminative features.
Our evaluations on five benchmarks, Synapse, BTCV, ACDC, BRaTs, and Decathlon-Lung, reveal the effectiveness of our contributions in terms of both efficiency and accuracy.
arXiv Detail & Related papers (2022-12-08T18:59:57Z) - Dual Multi-scale Mean Teacher Network for Semi-supervised Infection
Segmentation in Chest CT Volume for COVID-19 [76.51091445670596]
Automated detecting lung infections from computed tomography (CT) data plays an important role for combating COVID-19.
Most current COVID-19 infection segmentation methods mainly relied on 2D CT images, which lack 3D sequential constraint.
Existing 3D CT segmentation methods focus on single-scale representations, which do not achieve the multiple level receptive field sizes on 3D volume.
arXiv Detail & Related papers (2022-11-10T13:11:21Z) - GLEAM: Greedy Learning for Large-Scale Accelerated MRI Reconstruction [50.248694764703714]
Unrolled neural networks have recently achieved state-of-the-art accelerated MRI reconstruction.
These networks unroll iterative optimization algorithms by alternating between physics-based consistency and neural-network based regularization.
We propose Greedy LEarning for Accelerated MRI reconstruction, an efficient training strategy for high-dimensional imaging settings.
arXiv Detail & Related papers (2022-07-18T06:01:29Z) - HIVE-Net: Centerline-Aware HIerarchical View-Ensemble Convolutional
Network for Mitochondria Segmentation in EM Images [3.1498833540989413]
We introduce a novel hierarchical view-ensemble convolution (HVEC) to learn 3D spatial contexts using more efficient 2D convolutions.
The proposed method performs favorably against the state-of-the-art methods in accuracy and visual quality but with a greatly reduced model size.
arXiv Detail & Related papers (2021-01-08T06:56:40Z) - TSGCNet: Discriminative Geometric Feature Learning with Two-Stream
GraphConvolutional Network for 3D Dental Model Segmentation [141.2690520327948]
We propose a two-stream graph convolutional network (TSGCNet) to learn multi-view information from different geometric attributes.
We evaluate our proposed TSGCNet on a real-patient dataset of dental models acquired by 3D intraoral scanners.
arXiv Detail & Related papers (2020-12-26T08:02:56Z) - Efficient embedding network for 3D brain tumor segmentation [0.33727511459109777]
In this paper, we investigate a way to transfer the performance of a two-dimensional classiffication network for the purpose of three-dimensional semantic segmentation of brain tumors.
As the input data is in 3D, the first layers of the encoder are devoted to the reduction of the third dimension in order to fit the input of the EfficientNet network.
Experimental results on validation and test data from the BraTS 2020 challenge demonstrate that the proposed method achieve promising performance.
arXiv Detail & Related papers (2020-11-22T16:17:29Z) - Volumetric Medical Image Segmentation: A 3D Deep Coarse-to-fine
Framework and Its Adversarial Examples [74.92488215859991]
We propose a novel 3D-based coarse-to-fine framework to efficiently tackle these challenges.
The proposed 3D-based framework outperforms their 2D counterparts by a large margin since it can leverage the rich spatial information along all three axes.
We conduct experiments on three datasets, the NIH pancreas dataset, the JHMI pancreas dataset and the JHMI pathological cyst dataset.
arXiv Detail & Related papers (2020-10-29T15:39:19Z) - DDU-Nets: Distributed Dense Model for 3D MRI Brain Tumor Segmentation [27.547646527286886]
Three patterns of distributed dense connections (DDCs) are proposed to enhance feature reuse and propagation of CNNs.
For better detecting and segmenting brain tumors from 3D MR images, CNN-based models embedded with DDCs (DDU-Nets) are trained efficiently from pixel to pixel.
The proposed method is evaluated on the BraTS 2019 dataset with results demonstrating the effectiveness of the DDU-Nets.
arXiv Detail & Related papers (2020-03-03T05:08:34Z) - 2D Convolutional Neural Networks for 3D Digital Breast Tomosynthesis
Classification [20.245580301060418]
Key challenges in developing automated methods for classification are handling the variable number of slices and retaining slice-to-slice changes.
We propose a novel deep 2D convolutional neural network (CNN) architecture for classification that simultaneously overcomes both challenges.
Our approach operates on the full volume, regardless of the number of slices, and allows the use of pre-trained 2D CNNs for feature extraction.
arXiv Detail & Related papers (2020-02-27T18:32:52Z) - 2.75D: Boosting learning by representing 3D Medical imaging to 2D
features for small data [54.223614679807994]
3D convolutional neural networks (CNNs) have started to show superior performance to 2D CNNs in numerous deep learning tasks.
Applying transfer learning on 3D CNN is challenging due to a lack of publicly available pre-trained 3D models.
In this work, we proposed a novel 2D strategical representation of volumetric data, namely 2.75D.
As a result, 2D CNN networks can also be used to learn volumetric information.
arXiv Detail & Related papers (2020-02-11T08:24:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.