A novel framework for systematic propositional formula simplification based on existential graphs
- URL: http://arxiv.org/abs/2405.17072v1
- Date: Mon, 27 May 2024 11:42:46 GMT
- Title: A novel framework for systematic propositional formula simplification based on existential graphs
- Authors: Jordina Francès de Mas, Juliana Bowles,
- Abstract summary: This paper presents a novel simplification calculus for propositional logic derived from Peirce's existential graphs' rules of inference and implication graphs.
Our rules can be applied to propositional logic formulae in nested form, are equivalence-preserving, guarantee a monotonically decreasing number of variables, clauses and literals, and maximise the preservation of structural problem information.
- Score: 1.104960878651584
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This paper presents a novel simplification calculus for propositional logic derived from Peirce's existential graphs' rules of inference and implication graphs. Our rules can be applied to propositional logic formulae in nested form, are equivalence-preserving, guarantee a monotonically decreasing number of variables, clauses and literals, and maximise the preservation of structural problem information. Our techniques can also be seen as higher-level SAT preprocessing, and we show how one of our rules (TWSR) generalises and streamlines most of the known equivalence-preserving SAT preprocessing methods. In addition, we propose a simplification procedure based on the systematic application of two of our rules (EPR and TWSR) which is solver-agnostic and can be used to simplify large Boolean satisfiability problems and propositional formulae in arbitrary form, and we provide a formal analysis of its algorithmic complexity in terms of space and time. Finally, we show how our rules can be further extended with a novel n-ary implication graph to capture all known equivalence-preserving preprocessing procedures.
Related papers
- From Exponential to Polynomial Complexity: Efficient Permutation Counting with Subword Constraints [0.0]
Counting distinct permutations with replacement, especially when involving multiple subwords, is a longstanding challenge in analysis.
This paper introduces a novel framework that presents closed-form formulas for calculating distinct permutations with replacement.
We then extend our foundational formula to handle multiple subwords through the development of an additional formula.
arXiv Detail & Related papers (2024-11-23T19:52:11Z) - Learning Visual-Semantic Subspace Representations for Propositional Reasoning [49.17165360280794]
We propose a novel approach for learning visual representations that conform to a specified semantic structure.
Our approach is based on a new nuclear norm-based loss.
We show that its minimum encodes the spectral geometry of the semantics in a subspace lattice.
arXiv Detail & Related papers (2024-05-25T12:51:38Z) - A Neural Rewriting System to Solve Algorithmic Problems [47.129504708849446]
We propose a modular architecture designed to learn a general procedure for solving nested mathematical formulas.
Inspired by rewriting systems, a classic framework in symbolic artificial intelligence, we include in the architecture three specialized and interacting modules.
We benchmark our system against the Neural Data Router, a recent model specialized for systematic generalization, and a state-of-the-art large language model (GPT-4) probed with advanced prompting strategies.
arXiv Detail & Related papers (2024-02-27T10:57:07Z) - From Probabilistic Programming to Complexity-based Programming [0.5874142059884521]
The paper presents the main characteristics and a preliminary implementation of a novel computational framework named CompLog.
Inspired by probabilistic programming systems like ProbLog, CompLog builds upon the inferential mechanisms proposed by Simplicity Theory.
The proposed system enables users to compute ex-post and ex-ante measures of unexpectedness of a certain situation.
arXiv Detail & Related papers (2023-07-28T10:11:01Z) - A Hybrid System for Systematic Generalization in Simple Arithmetic
Problems [70.91780996370326]
We propose a hybrid system capable of solving arithmetic problems that require compositional and systematic reasoning over sequences of symbols.
We show that the proposed system can accurately solve nested arithmetical expressions even when trained only on a subset including the simplest cases.
arXiv Detail & Related papers (2023-06-29T18:35:41Z) - String Theories involving Regular Membership Predicates: From Practice
to Theory and Back [12.98284167710378]
An algorithm for the satisfiability problem for systems of string constraints requires a thorough understanding of the structure of constraints present in the targeted cases.
In this paper, we investigate benchmarks presented in the literature containing regular expression membership predicates, extract different first order logic theories, and prove their decidability undecidability.
Notably, the most common theories in real-world benchmarks are PSPACE-complete and directly lead to the implementation of a more efficient algorithm to solving string constraints.
arXiv Detail & Related papers (2021-05-15T13:13:50Z) - Controllable Text Simplification with Explicit Paraphrasing [88.02804405275785]
Text Simplification improves the readability of sentences through several rewriting transformations, such as lexical paraphrasing, deletion, and splitting.
Current simplification systems are predominantly sequence-to-sequence models that are trained end-to-end to perform all these operations simultaneously.
We propose a novel hybrid approach that leverages linguistically-motivated rules for splitting and deletion, and couples them with a neural paraphrasing model to produce varied rewriting styles.
arXiv Detail & Related papers (2020-10-21T13:44:40Z) - Conditional gradient methods for stochastically constrained convex
minimization [54.53786593679331]
We propose two novel conditional gradient-based methods for solving structured convex optimization problems.
The most important feature of our framework is that only a subset of the constraints is processed at each iteration.
Our algorithms rely on variance reduction and smoothing used in conjunction with conditional gradient steps, and are accompanied by rigorous convergence guarantees.
arXiv Detail & Related papers (2020-07-07T21:26:35Z) - An Integer Linear Programming Framework for Mining Constraints from Data [81.60135973848125]
We present a general framework for mining constraints from data.
In particular, we consider the inference in structured output prediction as an integer linear programming (ILP) problem.
We show that our approach can learn to solve 9x9 Sudoku puzzles and minimal spanning tree problems from examples without providing the underlying rules.
arXiv Detail & Related papers (2020-06-18T20:09:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.