論文の概要: SoK: Leveraging Transformers for Malware Analysis
- arxiv url: http://arxiv.org/abs/2405.17190v1
- Date: Mon, 27 May 2024 14:14:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-28 15:03:23.953790
- Title: SoK: Leveraging Transformers for Malware Analysis
- Title(参考訳): SoK: マルウェア分析のためのトランスフォーマーの活用
- Authors: Pradip Kunwar, Kshitiz Aryal, Maanak Gupta, Mahmoud Abdelsalam, Elisa Bertino,
- Abstract要約: トランスフォーマーの導入は、生成AIの基礎となるトランスフォーマーとして、AI研究と応用にとって重要なブレークスルーとなった。
トランスフォーマーのための有望なアプリケーションドメインはサイバーセキュリティ、特にマルウェアドメイン分析である。
本論文は,マルウェア解析用に設計されたトランスフォーマーベースのアプローチを包括的に分析することを目的としている。
- 参考スコア(独自算出の注目度): 8.999677363643224
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The introduction of transformers has been an important breakthrough for AI research and application as transformers are the foundation behind Generative AI. A promising application domain for transformers is cybersecurity, in particular the malware domain analysis. The reason is the flexibility of the transformer models in handling long sequential features and understanding contextual relationships. However, as the use of transformers for malware analysis is still in the infancy stage, it is critical to evaluate, systematize, and contextualize existing literature to foster future research. This Systematization of Knowledge (SoK) paper aims to provide a comprehensive analysis of transformer-based approaches designed for malware analysis. Based on our systematic analysis of existing knowledge, we structure and propose taxonomies based on: (a) how different transformers are adapted, organized, and modified across various use cases; and (b) how diverse feature types and their representation capabilities are reflected. We also provide an inventory of datasets used to explore multiple research avenues in the use of transformers for malware analysis and discuss open challenges with future research directions. We believe that this SoK paper will assist the research community in gaining detailed insights from existing work and will serve as a foundational resource for implementing novel research using transformers for malware analysis.
- Abstract(参考訳): トランスフォーマーの導入は、生成AIの基礎となるトランスフォーマーとして、AI研究と応用にとって重要なブレークスルーとなった。
トランスフォーマーのための有望なアプリケーションドメインはサイバーセキュリティ、特にマルウェアドメイン分析である。
理由は、長いシーケンシャルな特徴を扱い、文脈的関係を理解する上で、トランスフォーマーモデルの柔軟性である。
しかし,マルウェア解析におけるトランスフォーマーの利用はまだ初期段階であるため,既存の文献を評価・体系化・文脈化して今後の研究を促進することが重要である。
The Systematization of Knowledge (SoK) paper to provide a comprehensive analysis of transformer-based approach designed for malware analysis。
既存の知識の体系的な分析に基づいて、我々は以下の分類体系を構築し、提案する。
(a)異なる変圧器が様々な用途に適応し、整理し、変更される方法、及び
b) 機能タイプと表現能力の多様性がどの程度反映されているか。
また,マルウェア解析にトランスフォーマーを用いることで,複数の研究ルートを探索するためのデータセットのインベントリを提供し,今後の研究方向性とオープンな課題について議論する。
本論文は,既存の研究から詳細な知見を得た研究コミュニティを支援し,マルウェア解析にトランスフォーマーを用いた新たな研究を実施するための基礎資料として機能すると考えられる。
関連論文リスト
- Transformers and Large Language Models for Efficient Intrusion Detection Systems: A Comprehensive Survey [0.3108011671896571]
本稿では,サイバー脅威検出システムにおけるトランスフォーマーとLCMの利用状況について,包括的分析を行った。
様々なサイバー攻撃の背景情報や、この分野でよく使われるデータセットなど、トランスフォーマーの基本について論じる。
コンピュータネットワーク、IoTデバイス、重要なインフラストラクチャ保護、クラウドコンピューティング、SDN、自動運転車など、TransformerとLLMベースのIDSが実装されているさまざまな環境とアプリケーションについて検討している。
論文 参考訳(メタデータ) (2024-08-14T14:28:11Z) - Survey: Transformer-based Models in Data Modality Conversion [0.8136541584281987]
モダリティ・コンバージョン(Modality Conversion)は、人間が知覚情報を統合して解釈する方法を模倣して、ある形態の表現から別の形式へのデータの変換を行う。
本稿では, テキスト, 視覚, 音声の一次モーダル性に適用されたトランスフォーマーモデルについて, アーキテクチャ, 変換手法, 応用について論じる。
論文 参考訳(メタデータ) (2024-08-08T18:39:14Z) - Transformers in Reinforcement Learning: A Survey [7.622978576824539]
トランスフォーマーは自然言語処理、コンピュータビジョン、ロボット工学といった領域に影響を与え、他のニューラルネットワークと比較してパフォーマンスを改善している。
この調査では、トランスフォーマーが強化学習(RL)でどのように使われているかを調査し、不安定なトレーニング、クレジット割り当て、解釈可能性の欠如、部分的可観測性といった課題に対処するための有望な解決策と見なされている。
論文 参考訳(メタデータ) (2023-07-12T07:51:12Z) - A Comprehensive Survey on Applications of Transformers for Deep Learning
Tasks [60.38369406877899]
Transformerは、シーケンシャルデータ内のコンテキスト関係を理解するために自己認識メカニズムを使用するディープニューラルネットワークである。
Transformerモデルは、入力シーケンス要素間の長い依存関係を処理し、並列処理を可能にする。
我々の調査では、トランスフォーマーベースのモデルのためのトップ5のアプリケーションドメインを特定します。
論文 参考訳(メタデータ) (2023-06-11T23:13:51Z) - Advances in Medical Image Analysis with Vision Transformers: A
Comprehensive Review [6.953789750981636]
医療画像におけるトランスフォーマーの応用に関する百科事典のレビューを行う。
具体的には,医療画像解析タスクにおけるトランスフォーマー関連文献の体系的,徹底的なレビューを行う。
論文 参考訳(メタデータ) (2023-01-09T16:56:23Z) - A Survey on Transformers in Reinforcement Learning [66.23773284875843]
Transformer は NLP と CV において支配的なニューラルネットワークアーキテクチャと見なされている。
近年、強化学習(RL)分野においてトランスフォーマーの使用が急増しているが、RLの性質によってもたらされるユニークな設計選択と課題に直面している。
本稿では,RLにおけるトランスフォーマーの利用の動機と進歩を体系的にレビューし,既存の作業の分類を提供し,各サブフィールドについて議論し,今後の展望を要約する。
論文 参考訳(メタデータ) (2023-01-08T14:04:26Z) - Exploring Structure-aware Transformer over Interaction Proposals for
Human-Object Interaction Detection [119.93025368028083]
我々は、新しいトランスフォーマー型ヒューマンオブジェクトインタラクション(HOI)検出器、すなわち、インタラクション提案(STIP)による構造認識トランスフォーマーを設計する。
STIPはHOIセット予測の過程を、まず相互作用の提案生成を行い、次に構造認識変換器を介して非パラメトリック相互作用提案をHOI予測に変換する2つのフェーズに分解する。
構造対応トランスフォーマーは、相互作用提案間の相同的意味構造を付加してバニラトランスフォーマーをアップグレードし、各相互作用提案内の人間・物体の局所的空間構造を付加し、HOIを強化する。
論文 参考訳(メタデータ) (2022-06-13T16:21:08Z) - Transformers in Time Series: A Survey [66.50847574634726]
時系列モデリングのためのTransformerスキームを,その強みと限界を強調して体系的にレビューする。
ネットワーク構造の観点から、トランスフォーマーに施された適応と修正を要約する。
応用の観点からは,予測,異常検出,分類などの共通タスクに基づいて時系列変換器を分類する。
論文 参考訳(メタデータ) (2022-02-15T01:43:27Z) - Transformers in Vision: A Survey [101.07348618962111]
トランスフォーマーは、入力シーケンス要素間の長い依存関係をモデリングし、シーケンスの並列処理をサポートします。
変圧器は設計に最小限の誘導バイアスを必要とし、自然にセット関数として適しています。
本調査は,コンピュータビジョン分野におけるトランスフォーマーモデルの概要を概観することを目的としている。
論文 参考訳(メタデータ) (2021-01-04T18:57:24Z) - A Survey on Visual Transformer [126.56860258176324]
Transformerは、主に自己認識機構に基づくディープニューラルネットワークの一種である。
本稿では、これらの視覚変換器モデルについて、異なるタスクで分類し、それらの利点と欠点を分析することでレビューする。
論文 参考訳(メタデータ) (2020-12-23T09:37:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。