論文の概要: MCGAN: Enhancing GAN Training with Regression-Based Generator Loss
- arxiv url: http://arxiv.org/abs/2405.17191v2
- Date: Sat, 21 Dec 2024 07:18:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-24 15:51:27.909511
- Title: MCGAN: Enhancing GAN Training with Regression-Based Generator Loss
- Title(参考訳): MCGAN: 回帰型発電機損失によるGANトレーニングの強化
- Authors: Baoren Xiao, Hao Ni, Weixin Yang,
- Abstract要約: 高忠実度データを生成する強力なツールとして,GAN(Generative Adversarial Network)が登場している。
既存のアプローチの主なボトルネックは、ジェネレータトレーニングの監督の欠如である。
我々はモンテカルロガン(MCGAN)と呼ばれるアルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 5.7645234295847345
- License:
- Abstract: Generative adversarial networks (GANs) have emerged as a powerful tool for generating high-fidelity data. However, the main bottleneck of existing approaches is the lack of supervision on the generator training, which often results in undamped oscillation and unsatisfactory performance. To address this issue, we propose an algorithm called Monte Carlo GAN (MCGAN). This approach, utilizing an innovative generative loss function, termly the regression loss, reformulates the generator training as a regression task and enables the generator training by minimizing the mean squared error between the discriminator's output of real data and the expected discriminator of fake data. We demonstrate the desirable analytic properties of the regression loss, including discriminability and optimality, and show that our method requires a weaker condition on the discriminator for effective generator training. These properties justify the strength of this approach to improve the training stability while retaining the optimality of GAN by leveraging strong supervision of the regression loss. Extensive experiments on diverse datasets, including image data (CIFAR-10/100, FFHQ256, ImageNet, and LSUN Bedroom), time series data (VAR and stock data) and video data, are conducted to demonstrate the flexibility and effectiveness of our proposed MCGAN. Numerical results show that the proposed MCGAN is versatile in enhancing a variety of backbone GAN models and achieves consistent and significant improvement in terms of quality, accuracy, training stability, and learned latent space.
- Abstract(参考訳): 高忠実度データを生成する強力なツールとして,GAN(Generative Adversarial Network)が登場している。
しかし、既存のアプローチの主なボトルネックは、ジェネレータトレーニングの監督の欠如である。
この問題に対処するため,モンテカルロガン (MCGAN) と呼ばれるアルゴリズムを提案する。
この手法は、革新的生成損失関数、すなわち回帰損失を利用して、回帰タスクとしてジェネレータ訓練を再構成し、実データの判別器の出力と偽データの予測判別器との間の平均2乗誤差を最小化することにより、ジェネレータ訓練を可能にする。
判別可能性や最適性を含む回帰損失の望ましい解析特性を実証し,本手法が有効発電機訓練のための判別器に弱い条件を必要とすることを示す。
これらの特性は、回帰損失の強い監督を生かして、GANの最適性を保ちながら、トレーニング安定性を向上させるためのこのアプローチの強みを正当化する。
画像データ (CIFAR-10/100, FFHQ256, ImageNet, LSUN Bedroom) や時系列データ (VAR, ストックデータ) , ビデオデータなど, 多様なデータセットに関する広範な実験を行い, 提案したMCGANの柔軟性と有効性を示す。
数値計算により,提案したMCGANは,様々なバックボーンGANモデルの拡張に汎用性があり,品質,精度,トレーニング安定性,学習潜時空間の整合性および顕著な改善を実現していることがわかった。
関連論文リスト
- Parallelly Tempered Generative Adversarial Networks [7.94957965474334]
生成的敵対ネットワーク(GAN)は、生成的人工知能(AI)における代表的バックボーンモデルである。
本研究は,モード崩壊の存在下でのトレーニングの不安定性と非効率性を,対象分布におけるマルチモーダルにリンクすることで解析する。
新たに開発したGAN目標関数により, 生成元は同時に全ての誘電分布を学習することができる。
論文 参考訳(メタデータ) (2024-11-18T18:01:13Z) - UncertaintyRAG: Span-Level Uncertainty Enhanced Long-Context Modeling for Retrieval-Augmented Generation [93.38604803625294]
IncertaintyRAG, a novel approach for long-context Retrieval-Augmented Generation (RAG)について紹介する。
我々は、SNR(Signal-to-Noise Ratio)ベースのスパン不確実性を用いて、テキストチャンク間の類似性を推定する。
不確かさRAGはLLaMA-2-7Bでベースラインを2.03%上回り、最先端の結果を得る。
論文 参考訳(メタデータ) (2024-10-03T17:39:38Z) - Out of the Ordinary: Spectrally Adapting Regression for Covariate Shift [12.770658031721435]
本稿では,学習前のニューラル回帰モデルの最後の層の重みを適応させて,異なる分布から得られる入力データを改善する手法を提案する。
本稿では,この軽量なスペクトル適応手法により,合成および実世界のデータセットの分布外性能が向上することを示す。
論文 参考訳(メタデータ) (2023-12-29T04:15:58Z) - Damage GAN: A Generative Model for Imbalanced Data [1.027461951217988]
本研究では、不均衡データセットの文脈におけるGAN(Generative Adversarial Networks)の適用について検討する。
本稿では,GANとコントラスト学習をシームレスに統合するContraD GANフレームワークを基盤として,損傷GANと呼ばれる新しいネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-12-08T06:36:33Z) - Time-series Generation by Contrastive Imitation [87.51882102248395]
モーメントマッチングの目的によってモチベーションされ、複合的エラーを軽減し、局所的(しかし前方的な)遷移ポリシーを最適化する。
推論において、学習されたポリシーは反復的なサンプリングのジェネレータとして機能し、学習されたエネルギーはサンプルの品質を評価するための軌道レベル尺度として機能する。
論文 参考訳(メタデータ) (2023-11-02T16:45:25Z) - Analysis and Optimization of Wireless Federated Learning with Data
Heterogeneity [72.85248553787538]
本稿では、データの不均一性を考慮した無線FLの性能解析と最適化と、無線リソース割り当てについて述べる。
ロス関数の最小化問題を、長期エネルギー消費と遅延の制約の下で定式化し、クライアントスケジューリング、リソース割り当て、ローカルトレーニングエポック数(CRE)を共同で最適化する。
実世界のデータセットの実験により、提案アルゴリズムは学習精度とエネルギー消費の点で他のベンチマークよりも優れていることが示された。
論文 参考訳(メタデータ) (2023-08-04T04:18:01Z) - Conditional Denoising Diffusion for Sequential Recommendation [62.127862728308045]
GAN(Generative Adversarial Networks)とVAE(VAE)の2つの顕著な生成モデル
GANは不安定な最適化に苦しむ一方、VAEは後続の崩壊と過度に平らな世代である。
本稿では,シーケンスエンコーダ,クロスアテンティブデノナイジングデコーダ,ステップワイズディフューザを含む条件付きデノナイジング拡散モデルを提案する。
論文 参考訳(メタデータ) (2023-04-22T15:32:59Z) - Augmentation-Aware Self-Supervision for Data-Efficient GAN Training [68.81471633374393]
識別器が過度に適合する傾向があるため、限られたデータでGANを訓練することは困難である。
本稿では,拡張データの拡張パラメータを予測する,拡張型自己教師型識別器を提案する。
本稿では,クラス条件の BigGAN と非条件の StyleGAN2 アーキテクチャを用いた State-of-the-art (SOTA) 手法と比較する。
論文 参考訳(メタデータ) (2022-05-31T10:35:55Z) - Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited
Data [125.7135706352493]
GAN(Generative Adversarial Network)は、高忠実度画像を合成するために、訓練に十分なデータを必要とする。
近年の研究では、差別者の過度な適合により、限られたデータでGANを訓練することは困難であることが示されている。
本稿では,APA (Adaptive Pseudo Augmentation) と呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2021-11-12T18:13:45Z) - An Empirical Study on GANs with Margin Cosine Loss and Relativistic
Discriminator [4.899818550820575]
我々は新しい損失関数、すなわち相対論的Margin Cosine Loss(RMCosGAN)を導入する。
本稿では,RCCosGANの性能と既存の損失関数を比較する。
実験の結果,RCCosGANは既存の画像よりも優れており,画像の品質が著しく向上していることがわかった。
論文 参考訳(メタデータ) (2021-10-21T17:25:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。