Efficient Ensembles Improve Training Data Attribution
- URL: http://arxiv.org/abs/2405.17293v1
- Date: Mon, 27 May 2024 15:58:34 GMT
- Title: Efficient Ensembles Improve Training Data Attribution
- Authors: Junwei Deng, Ting-Wei Li, Shichang Zhang, Jiaqi Ma,
- Abstract summary: Training data attribution methods aim to quantify the influence of individual data points on model predictions, with broad applications in data-centric AI.
Existing methods in this field, which can be categorized as retraining-based and gradient-based methods, have struggled with naive trade-off attribution efficacy.
Recent research has shown that augmenting gradient-based methods with ensembles of multiple independently trained models can achieve significantly better attribution.
- Score: 12.180392191924758
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Training data attribution (TDA) methods aim to quantify the influence of individual training data points on the model predictions, with broad applications in data-centric AI, such as mislabel detection, data selection, and copyright compensation. However, existing methods in this field, which can be categorized as retraining-based and gradient-based, have struggled with the trade-off between computational efficiency and attribution efficacy. Retraining-based methods can accurately attribute complex non-convex models but are computationally prohibitive, while gradient-based methods are efficient but often fail for non-convex models. Recent research has shown that augmenting gradient-based methods with ensembles of multiple independently trained models can achieve significantly better attribution efficacy. However, this approach remains impractical for very large-scale applications. In this work, we discover that expensive, fully independent training is unnecessary for ensembling the gradient-based methods, and we propose two efficient ensemble strategies, DROPOUT ENSEMBLE and LORA ENSEMBLE, alternative to naive independent ensemble. These strategies significantly reduce training time (up to 80%), serving time (up to 60%), and space cost (up to 80%) while maintaining similar attribution efficacy to the naive independent ensemble. Our extensive experimental results demonstrate that the proposed strategies are effective across multiple TDA methods on diverse datasets and models, including generative settings, significantly advancing the Pareto frontier of TDA methods with better computational efficiency and attribution efficacy.
Related papers
- A Scalable Approach to Covariate and Concept Drift Management via Adaptive Data Segmentation [0.562479170374811]
In many real-world applications, continuous machine learning (ML) systems are crucial but prone to data drift.
Traditional drift adaptation methods typically update models using ensemble techniques, often discarding drifted historical data.
We contend that explicitly incorporating drifted data into the model training process significantly enhances model accuracy and robustness.
arXiv Detail & Related papers (2024-11-23T17:35:23Z) - Enhancing Training Data Attribution for Large Language Models with Fitting Error Consideration [74.09687562334682]
We introduce a novel training data attribution method called Debias and Denoise Attribution (DDA)
Our method significantly outperforms existing approaches, achieving an averaged AUC of 91.64%.
DDA exhibits strong generality and scalability across various sources and different-scale models like LLaMA2, QWEN2, and Mistral.
arXiv Detail & Related papers (2024-10-02T07:14:26Z) - Beyond Efficiency: Molecular Data Pruning for Enhanced Generalization [30.738229850748137]
MolPeg is a Molecular data Pruning framework for enhanced Generalization.
It focuses on the source-free data pruning scenario, where data pruning is applied with pretrained models.
It consistently outperforms existing DP methods across four downstream tasks.
arXiv Detail & Related papers (2024-09-02T09:06:04Z) - Training Data Attribution via Approximate Unrolled Differentiation [8.87519936904341]
Methods based on implicit differentiation, such as influence functions, can be made computationally efficient, but fail to account for underspecification.
We introduce Source, an approximate unrolling-based TDA method that is computed using an influence-function-like formula.
arXiv Detail & Related papers (2024-05-20T17:17:44Z) - Active Transfer Learning for Efficient Video-Specific Human Pose
Estimation [16.415080031134366]
Human Pose (HP) estimation is actively researched because of its wide range of applications.
We present our approach combining Active Learning (AL) and Transfer Learning (TL) to adapt HP estimators to individual video domains efficiently.
arXiv Detail & Related papers (2023-11-08T21:56:29Z) - Reducing Adversarial Training Cost with Gradient Approximation [0.3916094706589679]
We propose a new and efficient adversarial training method, adversarial training with gradient approximation (GAAT) to reduce the cost of building up robust models.
Our proposed method saves up to 60% of the training time with comparable model test accuracy on datasets.
arXiv Detail & Related papers (2023-09-18T03:55:41Z) - Improved Distribution Matching for Dataset Condensation [91.55972945798531]
We propose a novel dataset condensation method based on distribution matching.
Our simple yet effective method outperforms most previous optimization-oriented methods with much fewer computational resources.
arXiv Detail & Related papers (2023-07-19T04:07:33Z) - Learning Better with Less: Effective Augmentation for Sample-Efficient
Visual Reinforcement Learning [57.83232242068982]
Data augmentation (DA) is a crucial technique for enhancing the sample efficiency of visual reinforcement learning (RL) algorithms.
It remains unclear which attributes of DA account for its effectiveness in achieving sample-efficient visual RL.
This work conducts comprehensive experiments to assess the impact of DA's attributes on its efficacy.
arXiv Detail & Related papers (2023-05-25T15:46:20Z) - B-Learner: Quasi-Oracle Bounds on Heterogeneous Causal Effects Under
Hidden Confounding [51.74479522965712]
We propose a meta-learner called the B-Learner, which can efficiently learn sharp bounds on the CATE function under limits on hidden confounding.
We prove its estimates are valid, sharp, efficient, and have a quasi-oracle property with respect to the constituent estimators under more general conditions than existing methods.
arXiv Detail & Related papers (2023-04-20T18:07:19Z) - On Modality Bias Recognition and Reduction [70.69194431713825]
We study the modality bias problem in the context of multi-modal classification.
We propose a plug-and-play loss function method, whereby the feature space for each label is adaptively learned.
Our method yields remarkable performance improvements compared with the baselines.
arXiv Detail & Related papers (2022-02-25T13:47:09Z) - DEALIO: Data-Efficient Adversarial Learning for Imitation from
Observation [57.358212277226315]
In imitation learning from observation IfO, a learning agent seeks to imitate a demonstrating agent using only observations of the demonstrated behavior without access to the control signals generated by the demonstrator.
Recent methods based on adversarial imitation learning have led to state-of-the-art performance on IfO problems, but they typically suffer from high sample complexity due to a reliance on data-inefficient, model-free reinforcement learning algorithms.
This issue makes them impractical to deploy in real-world settings, where gathering samples can incur high costs in terms of time, energy, and risk.
We propose a more data-efficient IfO algorithm
arXiv Detail & Related papers (2021-03-31T23:46:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.