Cost-effective Reduced-Order Modeling via Bayesian Active Learning
- URL: http://arxiv.org/abs/2506.22645v1
- Date: Fri, 27 Jun 2025 21:23:37 GMT
- Title: Cost-effective Reduced-Order Modeling via Bayesian Active Learning
- Authors: Amir Hossein Rahmati, Nathan M. Urban, Byung-Jun Yoon, Xiaoning Qian,
- Abstract summary: We propose BayPOD-AL, an active learning framework based on an uncertainty-aware Bayesian proper decomposition (POD) approach.<n> Experimental results on predicting the temperature evolution over a rod demonstrate BayPOD-AL's effectiveness in suggesting the informative data.<n>We demonstrate BayPOD-AL's generalizability and efficiency by evaluating its performance on a dataset of higher temporal resolution than the training dataset.
- Score: 12.256032958843065
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Machine Learning surrogates have been developed to accelerate solving systems dynamics of complex processes in different science and engineering applications. To faithfully capture governing systems dynamics, these methods rely on large training datasets, hence restricting their applicability in real-world problems. In this work, we propose BayPOD-AL, an active learning framework based on an uncertainty-aware Bayesian proper orthogonal decomposition (POD) approach, which aims to effectively learn reduced-order models from high-fidelity full-order models representing complex systems. Experimental results on predicting the temperature evolution over a rod demonstrate BayPOD-AL's effectiveness in suggesting the informative data and reducing computational cost related to constructing a training dataset compared to other uncertainty-guided active learning strategies. Furthermore, we demonstrate BayPOD-AL's generalizability and efficiency by evaluating its performance on a dataset of higher temporal resolution than the training dataset.
Related papers
- Efficient Machine Unlearning via Influence Approximation [75.31015485113993]
Influence-based unlearning has emerged as a prominent approach to estimate the impact of individual training samples on model parameters without retraining.<n>This paper establishes a theoretical link between memorizing (incremental learning) and forgetting (unlearning)<n>We introduce the Influence Approximation Unlearning algorithm for efficient machine unlearning from the incremental perspective.
arXiv Detail & Related papers (2025-07-31T05:34:27Z) - ActivePusher: Active Learning and Planning with Residual Physics for Nonprehensile Manipulation [2.7405276609125164]
Planning with learned dynamics models offers a promising approach toward real-world, long-horizon manipulation.<n>ActivePusher is a framework that combines residual-physics modeling with kernel-based uncertainty-driven active learning.<n>We evaluate our approach in both simulation and real-world environments and demonstrate that it improves data efficiency and planning success rates compared to baseline methods.
arXiv Detail & Related papers (2025-06-05T05:28:14Z) - Active Learning of Model Discrepancy with Bayesian Experimental Design [0.0]
We propose an efficient approach to learn the model discrepancy based on the data from a sequential experimental design (BED)<n>We show that the proposed method is efficient and robust to the active learning of high-dimensional model discrepancy, using data suggested by the sequential BED.<n>We also demonstrate that the proposed method is compatible with both classical numerical solvers and modern auto-differentiable solvers.
arXiv Detail & Related papers (2025-02-07T22:54:20Z) - Feature Alignment-Based Knowledge Distillation for Efficient Compression of Large Language Models [4.737806982257592]
This study proposes a knowledge distillation algorithm based on large language models and feature alignment.<n>The proposed model performs very close to the state-of-the-art GPT-4 model in terms of evaluation indicators such as perplexity, BLEU, ROUGE, and CER.
arXiv Detail & Related papers (2024-12-27T04:37:06Z) - Distilled Datamodel with Reverse Gradient Matching [74.75248610868685]
We introduce an efficient framework for assessing data impact, comprising offline training and online evaluation stages.
Our proposed method achieves comparable model behavior evaluation while significantly speeding up the process compared to the direct retraining method.
arXiv Detail & Related papers (2024-04-22T09:16:14Z) - Learning Objective-Specific Active Learning Strategies with Attentive
Neural Processes [72.75421975804132]
Learning Active Learning (LAL) suggests to learn the active learning strategy itself, allowing it to adapt to the given setting.
We propose a novel LAL method for classification that exploits symmetry and independence properties of the active learning problem.
Our approach is based on learning from a myopic oracle, which gives our model the ability to adapt to non-standard objectives.
arXiv Detail & Related papers (2023-09-11T14:16:37Z) - ALP: Action-Aware Embodied Learning for Perception [60.64801970249279]
We introduce Action-Aware Embodied Learning for Perception (ALP)
ALP incorporates action information into representation learning through a combination of optimizing a reinforcement learning policy and an inverse dynamics prediction objective.
We show that ALP outperforms existing baselines in several downstream perception tasks.
arXiv Detail & Related papers (2023-06-16T21:51:04Z) - Robustness and Generalization Performance of Deep Learning Models on
Cyber-Physical Systems: A Comparative Study [71.84852429039881]
Investigation focuses on the models' ability to handle a range of perturbations, such as sensor faults and noise.
We test the generalization and transfer learning capabilities of these models by exposing them to out-of-distribution (OOD) samples.
arXiv Detail & Related papers (2023-06-13T12:43:59Z) - Robust Learning with Progressive Data Expansion Against Spurious
Correlation [65.83104529677234]
We study the learning process of a two-layer nonlinear convolutional neural network in the presence of spurious features.
Our analysis suggests that imbalanced data groups and easily learnable spurious features can lead to the dominance of spurious features during the learning process.
We propose a new training algorithm called PDE that efficiently enhances the model's robustness for a better worst-group performance.
arXiv Detail & Related papers (2023-06-08T05:44:06Z) - Learning a model is paramount for sample efficiency in reinforcement
learning control of PDEs [5.488334211013093]
We show that learning an actuated model in parallel to training the RL agent significantly reduces the total amount of required data sampled from the real system.
We also show that iteratively updating the model is of major importance to avoid biases in the RL training.
arXiv Detail & Related papers (2023-02-14T16:14:39Z) - DEALIO: Data-Efficient Adversarial Learning for Imitation from
Observation [57.358212277226315]
In imitation learning from observation IfO, a learning agent seeks to imitate a demonstrating agent using only observations of the demonstrated behavior without access to the control signals generated by the demonstrator.
Recent methods based on adversarial imitation learning have led to state-of-the-art performance on IfO problems, but they typically suffer from high sample complexity due to a reliance on data-inefficient, model-free reinforcement learning algorithms.
This issue makes them impractical to deploy in real-world settings, where gathering samples can incur high costs in terms of time, energy, and risk.
We propose a more data-efficient IfO algorithm
arXiv Detail & Related papers (2021-03-31T23:46:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.