論文の概要: Survey of Graph Neural Network for Internet of Things and NextG Networks
- arxiv url: http://arxiv.org/abs/2405.17309v1
- Date: Mon, 27 May 2024 16:10:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-28 14:33:59.933720
- Title: Survey of Graph Neural Network for Internet of Things and NextG Networks
- Title(参考訳): モノのインターネットと次世代ネットワークのためのグラフニューラルネットワークの調査
- Authors: Sabarish Krishna Moorthy, Jithin Jagannath,
- Abstract要約: グラフニューラルネットワーク(GNN)は、洞察を効果的にモデル化し抽出するための有望なパラダイムとして登場した。
この調査は、GNNの用語、アーキテクチャ、および異なるタイプのGNNについて、詳細な説明を提供する。
次に、GNNがネットワークシステムや戦術システムにどのように活用されているかについて詳細な説明を行う。
- 参考スコア(独自算出の注目度): 3.591122855617648
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The exponential increase in Internet of Things (IoT) devices coupled with 6G pushing towards higher data rates and connected devices has sparked a surge in data. Consequently, harnessing the full potential of data-driven machine learning has become one of the important thrusts. In addition to the advancement in wireless technology, it is important to efficiently use the resources available and meet the users' requirements. Graph Neural Networks (GNNs) have emerged as a promising paradigm for effectively modeling and extracting insights which inherently exhibit complex network structures due to its high performance and accuracy, scalability, adaptability, and resource efficiency. There is a lack of a comprehensive survey that focuses on the applications and advances GNN has made in the context of IoT and Next Generation (NextG) networks. To bridge that gap, this survey starts by providing a detailed description of GNN's terminologies, architecture, and the different types of GNNs. Then we provide a comprehensive survey of the advancements in applying GNNs for IoT from the perspective of data fusion and intrusion detection. Thereafter, we survey the impact GNN has made in improving spectrum awareness. Next, we provide a detailed account of how GNN has been leveraged for networking and tactical systems. Through this survey, we aim to provide a comprehensive resource for researchers to learn more about GNN in the context of wireless networks, and understand its state-of-the-art use cases while contrasting to other machine learning approaches. Finally, we also discussed the challenges and wide range of future research directions to further motivate the use of GNN for IoT and NextG Networks.
- Abstract(参考訳): モノのインターネット(IoT)デバイスが指数関数的に増加し、6Gがデータレートとコネクテッドデバイスを推し進めることで、データの急増が引き起こされた。
その結果、データ駆動機械学習の潜在能力を最大限に活用することが、重要な推力の1つとなった。
無線技術の進歩に加えて、利用可能なリソースを効率的に利用し、ユーザの要求を満たすことが重要である。
グラフニューラルネットワーク(GNN)は、高いパフォーマンスと精度、スケーラビリティ、適応性、リソース効率のために、本質的に複雑なネットワーク構造を示す洞察を効果的にモデル化し、抽出するための、有望なパラダイムとして登場した。
GNNがIoTとNext Generation(NextG)ネットワークのコンテキストで行ったアプリケーションと進歩に焦点を当てた総合的な調査が欠如している。
このギャップを埋めるために、この調査はGNNの用語、アーキテクチャ、および異なるタイプのGNNについて詳細な説明を提供することから始まる。
次に、データ融合と侵入検出の観点から、IoTにGNNを適用する際の進歩に関する総合的な調査を行う。
その後,GNNがスペクトル認識に与える影響を調査した。
次に、GNNがネットワークシステムや戦術システムにどのように活用されているかについて詳細な説明を行う。
本調査では,研究者が無線ネットワークの文脈でGNNについてより深く学び,その最先端のユースケースを理解しながら,他の機械学習アプローチとは対照的な総合的なリソースを提供することを目的としている。
最後に、IoTおよびNextG NetworksにおけるGNNの利用をさらに動機付けるための課題と今後の研究方向性についても論じました。
関連論文リスト
- Information Flow in Graph Neural Networks: A Clinical Triage Use Case [49.86931948849343]
グラフニューラルネットワーク(GNN)は、マルチモーダルグラフとマルチリレーショナルグラフを処理する能力によって、医療やその他の領域で人気を集めている。
GNNにおける埋め込み情報のフローが知識グラフ(KG)におけるリンクの予測に与える影響について検討する。
以上の結果から,ドメイン知識をGNN接続に組み込むことで,KGと同じ接続を使用する場合や,制約のない埋め込み伝搬を行う場合よりも優れた性能が得られることが示された。
論文 参考訳(メタデータ) (2023-09-12T09:18:12Z) - A Survey on Graph Neural Network Acceleration: Algorithms, Systems, and
Customized Hardware [30.525912505620685]
グラフ構造化データに関する機械学習研究のために、グラフニューラルネットワーク(GNN)が登場している。
GNNは多くのタスクで最先端のパフォーマンスを実現するが、現実のアプリケーションではスケーラビリティの問題に直面している。
我々は,GNN加速の分類学を提供し,既存のアプローチをレビューし,今後の研究方向性を提案する。
論文 参考訳(メタデータ) (2023-06-24T20:20:45Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
我々は,GNN予測に対する忠実な説明を提供するためにDGREEを提案する。
GNNの情報生成と集約機構を分解することにより、DECREEは入力グラフの特定のコンポーネントのコントリビューションを最終的な予測に追跡することができる。
また,従来の手法で見過ごされるグラフノード間の複雑な相互作用を明らかにするために,サブグラフレベルの解釈アルゴリズムを設計する。
論文 参考訳(メタデータ) (2023-05-22T10:29:52Z) - Graph Neural Networks Meet Wireless Communications: Motivation,
Applications, and Future Directions [62.48370728401775]
本稿では,グラフニューラルネットワーク(GNN)と無線通信の相互作用の概要について述べる。
無線通信用GNN(GNN4Com)およびGNN用無線通信用(Com4GNN)
我々は、無線通信におけるGNNの今後の研究取り組みを促進するための潜在的研究の方向性を強調した。
論文 参考訳(メタデータ) (2022-12-08T02:57:55Z) - Trustworthy Graph Neural Networks: Aspects, Methods and Trends [115.84291569988748]
グラフニューラルネットワーク(GNN)は,さまざまな実世界のシナリオに対して,有能なグラフ学習手法として登場した。
パフォーマンス指向のGNNは、敵の攻撃に対する脆弱性のような潜在的な副作用を示す。
こうした意図しない害を避けるためには、信頼度に特徴付けられる有能なGNNを構築する必要がある。
論文 参考訳(メタデータ) (2022-05-16T02:21:09Z) - A Comprehensive Survey on Trustworthy Graph Neural Networks: Privacy,
Robustness, Fairness, and Explainability [59.80140875337769]
グラフニューラルネットワーク(GNN)は近年,急速な発展を遂げている。
GNNは個人情報をリークしたり、敵対的攻撃に弱いり、トレーニングデータから社会的バイアスを継承したり、拡大したりすることができる。
本稿では、プライバシー、堅牢性、公正性、説明可能性の計算面におけるGNNの包括的調査を行う。
論文 参考訳(メタデータ) (2022-04-18T21:41:07Z) - Graph Neural Networks in IoT: A Survey [9.257834364029547]
IoT(Internet of Things)ブームは、人々の日常生活のほぼすべての部分に革命をもたらした。
ディープラーニングモデルは、IoTタスクの解決に広く採用されている。
グラフニューラルネットワーク(GNN)は、多くのIoT学習タスクで最先端の結果を達成するために実証されている。
論文 参考訳(メタデータ) (2022-03-29T22:27:59Z) - Graph Neural Networks for Communication Networks: Context, Use Cases and
Opportunities [4.4568884144849985]
グラフニューラルネットワーク(GNN)は、データが基本的にグラフとして表現される多くの分野において、優れた応用を示している。
GNNは、実際のネットワークの背後にある複雑な振る舞いを正確に学習し、再現できる新しい世代のデータ駆動モデルである。
本稿では、GNNとその通信ネットワークへの応用に関する簡単なチュートリアルを紹介する。
論文 参考訳(メタデータ) (2021-12-29T19:09:42Z) - Scaling Graph-based Deep Learning models to larger networks [2.946140899052065]
Graph Neural Networks (GNN)は、ネットワーク制御と管理のために商用製品に統合される可能性を示している。
本稿では,リンク容量の増大やリンクトラフィックの集約など,大規模ネットワークに効果的にスケール可能なGNNベースのソリューションを提案する。
論文 参考訳(メタデータ) (2021-10-04T09:04:19Z) - Computing Graph Neural Networks: A Survey from Algorithms to
Accelerators [2.491032752533246]
グラフニューラルネットワーク(GNN)は、グラフ構造化データからモデル化および学習する能力のため、近年、機械学習の現場で爆発的に普及している。
本稿では,GNNの分野をコンピュータの観点から概観する。
現在のソフトウェアとハードウェアアクセラレーションスキームの詳細な分析を行う。
論文 参考訳(メタデータ) (2020-09-30T22:29:27Z) - Attentive Graph Neural Networks for Few-Shot Learning [74.01069516079379]
グラフニューラルネットワーク(GNN)は、数ショットの学習タスクを含む多くの困難なアプリケーションにおいて、優れたパフォーマンスを示している。
少数のサンプルからモデルを学習し、一般化する能力があるにもかかわらず、GNNは通常、モデルが深くなるにつれて、過度な過度な適合と過度なスムーシングに悩まされる。
本稿では,三重注意機構を組み込むことにより,これらの課題に対処するための新しい注意型GNNを提案する。
論文 参考訳(メタデータ) (2020-07-14T07:43:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。