The Power of Next-Frame Prediction for Learning Physical Laws
- URL: http://arxiv.org/abs/2405.17450v1
- Date: Tue, 21 May 2024 17:55:54 GMT
- Title: The Power of Next-Frame Prediction for Learning Physical Laws
- Authors: Thomas Winterbottom, G. Thomas Hudson, Daniel Kluvanec, Dean Slack, Jamie Sterling, Junjie Shentu, Chenghao Xiao, Zheming Zhou, Noura Al Moubayed,
- Abstract summary: Next-frame prediction is a useful and powerful method for modelling and understanding the dynamics of video data.
We introduce six diagnostic simulation video datasets derived from fundamental physical laws created by varying physical constants such as gravity and mass.
We find that the generative training phase alone induces a model state that can predict physical constants significantly better than that of a random model.
- Score: 5.624870417352306
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Next-frame prediction is a useful and powerful method for modelling and understanding the dynamics of video data. Inspired by the empirical success of causal language modelling and next-token prediction in language modelling, we explore the extent to which next-frame prediction serves as a strong foundational learning strategy (analogous to language modelling) for inducing an understanding of the visual world. In order to quantify the specific visual understanding induced by next-frame prediction, we introduce six diagnostic simulation video datasets derived from fundamental physical laws created by varying physical constants such as gravity and mass. We demonstrate that our models trained only on next-frame prediction are capable of predicting the value of these physical constants (e.g. gravity) without having been trained directly to learn these constants via a regression task. We find that the generative training phase alone induces a model state that can predict physical constants significantly better than that of a random model, improving the loss by a factor of between 1.28 to 6.24. We conclude that next-frame prediction shows great promise as a general learning strategy to induce understanding of the many `laws' that govern the visual domain without the need for explicit labelling.
Related papers
- Interpretable Machine Learning for Weather and Climate Prediction: A Survey [24.028385794099435]
We review current interpretable machine learning approaches applied to meteorological predictions.
Design inherently interpretable models from scratch using architectures like tree ensembles and explainable neural networks.
We discuss research challenges around achieving deeper mechanistic interpretations aligned with physical principles.
arXiv Detail & Related papers (2024-03-24T14:23:35Z) - Large language models implicitly learn to straighten neural sentence
trajectories to construct a predictive representation of natural language [2.1756081703276]
We test a hypothesis about predictive representations of autoregressive transformers.
Key insight is that straighter trajectories should facilitate prediction via linear extrapolation.
We quantify straightness using a 1-dimensional curvature metric.
arXiv Detail & Related papers (2023-11-05T22:16:21Z) - Understanding Self-Predictive Learning for Reinforcement Learning [61.62067048348786]
We study the learning dynamics of self-predictive learning for reinforcement learning.
We propose a novel self-predictive algorithm that learns two representations simultaneously.
arXiv Detail & Related papers (2022-12-06T20:43:37Z) - Localization vs. Semantics: Visual Representations in Unimodal and
Multimodal Models [57.08925810659545]
We conduct a comparative analysis of the visual representations in existing vision-and-language models and vision-only models.
Our empirical observations suggest that vision-and-language models are better at label prediction tasks.
We hope our study sheds light on the role of language in visual learning, and serves as an empirical guide for various pretrained models.
arXiv Detail & Related papers (2022-12-01T05:00:18Z) - Measuring Causal Effects of Data Statistics on Language Model's
`Factual' Predictions [59.284907093349425]
Large amounts of training data are one of the major reasons for the high performance of state-of-the-art NLP models.
We provide a language for describing how training data influences predictions, through a causal framework.
Our framework bypasses the need to retrain expensive models and allows us to estimate causal effects based on observational data alone.
arXiv Detail & Related papers (2022-07-28T17:36:24Z) - Pathologies of Pre-trained Language Models in Few-shot Fine-tuning [50.3686606679048]
We show that pre-trained language models with few examples show strong prediction bias across labels.
Although few-shot fine-tuning can mitigate the prediction bias, our analysis shows models gain performance improvement by capturing non-task-related features.
These observations alert that pursuing model performance with fewer examples may incur pathological prediction behavior.
arXiv Detail & Related papers (2022-04-17T15:55:18Z) - A Survey of Knowledge Enhanced Pre-trained Models [28.160826399552462]
We refer to pre-trained language models with knowledge injection as knowledge-enhanced pre-trained language models (KEPLMs)
These models demonstrate deep understanding and logical reasoning and introduce interpretability.
arXiv Detail & Related papers (2021-10-01T08:51:58Z) - Hessian-based toolbox for reliable and interpretable machine learning in
physics [58.720142291102135]
We present a toolbox for interpretability and reliability, extrapolation of the model architecture.
It provides a notion of the influence of the input data on the prediction at a given test point, an estimation of the uncertainty of the model predictions, and an agnostic score for the model predictions.
Our work opens the road to the systematic use of interpretability and reliability methods in ML applied to physics and, more generally, science.
arXiv Detail & Related papers (2021-08-04T16:32:59Z) - Learning Accurate Long-term Dynamics for Model-based Reinforcement
Learning [7.194382512848327]
We propose a new parametrization to supervised learning on state-action data to stably predict at longer horizons.
Our results in simulated and experimental robotic tasks show that our trajectory-based models yield significantly more accurate long term predictions.
arXiv Detail & Related papers (2020-12-16T18:47:37Z) - Visual Grounding of Learned Physical Models [66.04898704928517]
Humans intuitively recognize objects' physical properties and predict their motion, even when the objects are engaged in complicated interactions.
We present a neural model that simultaneously reasons about physics and makes future predictions based on visual and dynamics priors.
Experiments show that our model can infer the physical properties within a few observations, which allows the model to quickly adapt to unseen scenarios and make accurate predictions into the future.
arXiv Detail & Related papers (2020-04-28T17:06:38Z) - Improved Speech Representations with Multi-Target Autoregressive
Predictive Coding [23.424410568555547]
We extend the hypothesis that hidden states that can accurately predict future frames are a useful representation for many downstream tasks.
We propose an auxiliary objective that serves as a regularization to improve generalization of the future frame prediction task.
arXiv Detail & Related papers (2020-04-11T01:09:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.