論文の概要: Blood Glucose Control Via Pre-trained Counterfactual Invertible Neural Networks
- arxiv url: http://arxiv.org/abs/2405.17458v1
- Date: Thu, 23 May 2024 01:34:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-30 00:20:06.393698
- Title: Blood Glucose Control Via Pre-trained Counterfactual Invertible Neural Networks
- Title(参考訳): 予め訓練した非現実的非現実的ニューラルネットワークによる血糖コントロール
- Authors: Jingchi Jiang, Rujia Shen, Boran Wang, Yi Guan,
- Abstract要約: 対実的可逆ニューラルネットワーク(CINN)に基づくイントロスペクティブ強化学習(RL)を提案する。
事前学習したCINNをRLエージェントのフリーズイントロスペクティブブロックとして使用し、フォワード予測と反ファクト推論を統合してポリシー更新を誘導する。
本稿では,BG予測における事前学習CINNの精度と一般化能力を実験的に検証した。
- 参考スコア(独自算出の注目度): 3.7217371773133325
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Type 1 diabetes mellitus (T1D) is characterized by insulin deficiency and blood glucose (BG) control issues. The state-of-the-art solution for continuous BG control is reinforcement learning (RL), where an agent can dynamically adjust exogenous insulin doses in time to maintain BG levels within the target range. However, due to the lack of action guidance, the agent often needs to learn from randomized trials to understand misleading correlations between exogenous insulin doses and BG levels, which can lead to instability and unsafety. To address these challenges, we propose an introspective RL based on Counterfactual Invertible Neural Networks (CINN). We use the pre-trained CINN as a frozen introspective block of the RL agent, which integrates forward prediction and counterfactual inference to guide the policy updates, promoting more stable and safer BG control. Constructed based on interpretable causal order, CINN employs bidirectional encoders with affine coupling layers to ensure invertibility while using orthogonal weight normalization to enhance the trainability, thereby ensuring the bidirectional differentiability of network parameters. We experimentally validate the accuracy and generalization ability of the pre-trained CINN in BG prediction and counterfactual inference for action. Furthermore, our experimental results highlight the effectiveness of pre-trained CINN in guiding RL policy updates for more accurate and safer BG control.
- Abstract(参考訳): 1型糖尿病(T1D)はインスリン欠乏症とBGコントロールの問題が特徴である。
連続BG制御のための最先端のソリューションは強化学習(RL)であり、エージェントはターゲット範囲内のBGレベルを維持するために、時間内に外因性インスリン投与量を動的に調整することができる。
しかしながら、アクションガイダンスが欠如しているため、エージェントは、外因性インスリン投与量とBGレベルの誤解を招く相関を理解するために、ランダム化試験から学ぶ必要があることが多い。
これらの課題に対処するために, 対実的可逆ニューラルネットワーク(CINN)に基づくイントロスペクティブRLを提案する。
事前学習したCINNをRLエージェントのフリーズイントロスペクティブブロックとして使用し、前方予測と逆ファクト推論を統合してポリシー更新をガイドし、より安定で安全なBG制御を促進する。
解釈可能な因果順序に基づいて構築されたCINNは、直交量正規化を用いて、アフィン結合層を持つ双方向エンコーダを用いて、トレーニング可能性を高め、ネットワークパラメータの双方向微分性を確保する。
本稿では,BG予測における事前学習CINNの精度と一般化能力を実験的に検証した。
さらに,より正確かつ安全なBG制御のためのRLポリシー更新の指導において,事前学習型CINNの有効性を強調した。
関連論文リスト
- Hybrid Attention Model Using Feature Decomposition and Knowledge Distillation for Glucose Forecasting [6.466206145151128]
GlucoNetは、行動と生理の健康を継続的に監視するAI駆動のセンサーシステムである。
本稿では,患者の行動・生理的データを組み込んだ分解型トランスフォーマーモデルを提案する。
GGlucoNetは、T1-Diabetesの12人を含むデータを用いて、RMSEの60%の改善とパラメータ数の21%削減を実現している。
論文 参考訳(メタデータ) (2024-11-16T05:09:20Z) - Privacy Preserved Blood Glucose Level Cross-Prediction: An Asynchronous Decentralized Federated Learning Approach [13.363740869325646]
新たに診断された1型糖尿病(T1D)患者は、効果的な血液グルコース(BG)予測モデルを得るのに苦慮することが多い。
Asynchronous Decentralized Federated Learning による血糖予測である「GluADFL」を提案する。
論文 参考訳(メタデータ) (2024-06-21T17:57:39Z) - Towards Understanding the Robustness of Diffusion-Based Purification: A Stochastic Perspective [65.10019978876863]
拡散性浄化(DBP)は、敵の攻撃に対する効果的な防御機構として出現している。
本稿では、DBPプロセスの本質が、その堅牢性の主要な要因であると主張している。
論文 参考訳(メタデータ) (2024-04-22T16:10:38Z) - An Improved Strategy for Blood Glucose Control Using Multi-Step Deep Reinforcement Learning [3.5757761767474876]
血糖コントロール(BG)は、体外インスリン注入によって、個人のBGを健康な範囲に保持する。
最近の研究は、個別化および自動化されたBG制御アプローチの探索に費やされている。
深層強化学習(DRL)は新たなアプローチとしての可能性を示している。
論文 参考訳(メタデータ) (2024-03-12T11:53:00Z) - GARNN: An Interpretable Graph Attentive Recurrent Neural Network for
Predicting Blood Glucose Levels via Multivariate Time Series [12.618792803757714]
マルチモーダルデータをモデル化するための解釈可能なグラフ減衰ニューラルネットワーク(GARNN)を提案する。
GARNNは最高の予測精度を達成し、高品質な時間的解釈性を提供する。
これらの知見は糖尿病治療改善のための堅牢なツールとしてのGARNNの可能性を示している。
論文 参考訳(メタデータ) (2024-02-26T01:18:53Z) - Can pruning improve certified robustness of neural networks? [106.03070538582222]
ニューラルネット・プルーニングはディープ・ニューラル・ネットワーク(NN)の実証的ロバスト性を向上させることができることを示す。
実験の結果,NNを適切に刈り取ることで,その精度を8.2%まで向上させることができることがわかった。
さらに,認証された宝くじの存在が,従来の密集モデルの標準および認証された堅牢な精度に一致することを観察する。
論文 参考訳(メタデータ) (2022-06-15T05:48:51Z) - Offline Reinforcement Learning for Safer Blood Glucose Control in People
with Type 1 Diabetes [1.1859913430860336]
オンライン強化学習(RL)は、糖尿病デバイスにおける血糖コントロールをさらに強化する方法として利用されてきた。
本稿では,FDAが承認したUVA/パドバ血糖動態シミュレータで利用可能な30名の仮想的患者の血糖管理におけるBCQ,CQL,TD3-BCの有用性について検討する。
オフラインのRLは、61.6 +-0.3%から65.3 +/-0.5%までの健康な血糖値において、最強の最先端のベースラインに比べて有意に上昇する。
論文 参考訳(メタデータ) (2022-04-07T11:52:12Z) - Differentially private training of neural networks with Langevin
dynamics forcalibrated predictive uncertainty [58.730520380312676]
その結果,DP-SGD(差分偏差勾配勾配勾配勾配勾配)は,低校正・過信深層学習モデルが得られることがわかった。
これは、医療診断など、安全クリティカルな応用にとって深刻な問題である。
論文 参考訳(メタデータ) (2021-07-09T08:14:45Z) - Policy Smoothing for Provably Robust Reinforcement Learning [109.90239627115336]
入力のノルム有界対向摂動に対する強化学習の証明可能な堅牢性について検討する。
我々は、スムーズなポリシーによって得られる全報酬が、入力の摂動のノルムバウンドな逆数の下で一定の閾値以下に収まらないことを保証した証明書を生成する。
論文 参考訳(メタデータ) (2021-06-21T21:42:08Z) - Towards Evaluating and Training Verifiably Robust Neural Networks [81.39994285743555]
We study the relationship between IBP and CROWN, and prove that CROWN are always tight than IBP when select each bounding lines。
線形結合伝播(LBP) CROWNの緩やかなバージョンを提案する。これは、大きなネットワークを検証して、より低い検証エラーを得るのに使用できる。
論文 参考訳(メタデータ) (2021-04-01T13:03:48Z) - Short Term Blood Glucose Prediction based on Continuous Glucose
Monitoring Data [53.01543207478818]
本研究では,デジタル意思決定支援ツールの入力として連続グルコースモニタリング(Continuous Glucose Monitoring, CGM)データを利用する方法について検討する。
短時間の血液グルコース (STBG) 予測において, リカレントニューラルネットワーク (Recurrent Neural Networks, RNN) をどのように利用できるかを検討する。
論文 参考訳(メタデータ) (2020-02-06T16:39:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。