論文の概要: Concept-based Explainable Malignancy Scoring on Pulmonary Nodules in CT Images
- arxiv url: http://arxiv.org/abs/2405.17483v1
- Date: Fri, 24 May 2024 13:36:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-30 00:00:30.064901
- Title: Concept-based Explainable Malignancy Scoring on Pulmonary Nodules in CT Images
- Title(参考訳): CT画像における肺結節の特異な悪性度の検討
- Authors: Rinat I. Dumaev, Sergei A. Molodyakov, Lev V. Utkin,
- Abstract要約: 一般化加法モデルと概念ベース学習を適用した解釈可能なモデルを提案する。
本モデルは、最終回帰スコアに加えて臨床的に重要な属性のセットを検出し、肺結節属性と最終診断決定との関係を学習する。
- 参考スコア(独自算出の注目度): 2.2120851074630177
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To increase the transparency of modern computer-aided diagnosis (CAD) systems for assessing the malignancy of lung nodules, an interpretable model based on applying the generalized additive models and the concept-based learning is proposed. The model detects a set of clinically significant attributes in addition to the final malignancy regression score and learns the association between the lung nodule attributes and a final diagnosis decision as well as their contributions into the decision. The proposed concept-based learning framework provides human-readable explanations in terms of different concepts (numerical and categorical), their values, and their contribution to the final prediction. Numerical experiments with the LIDC-IDRI dataset demonstrate that the diagnosis results obtained using the proposed model, which explicitly explores internal relationships, are in line with similar patterns observed in clinical practice. Additionally, the proposed model shows the competitive classification and the nodule attribute scoring performance, highlighting its potential for effective decision-making in the lung nodule diagnosis.
- Abstract(参考訳): 肺結節の悪性度を評価するためのコンピュータ支援診断システム(CAD)の透明性を高めるために, 一般化付加モデルを適用した解釈可能なモデルを提案し, 概念に基づく学習を提案する。
本モデルは、最終悪性度回帰スコアに加え、臨床的に重要な属性のセットを検出し、肺結節属性と最終診断決定との関係と、その決定への貢献を学習する。
提案した概念に基づく学習フレームワークは、異なる概念(数値と分類)、それらの価値、そして最終的な予測への貢献の観点から、人間可読な説明を提供する。
LIDC-IDRIデータセットを用いた数値実験により, 内的関係を明示的に探求するモデルを用いて得られた診断結果は, 臨床実践で観察された類似パターンと一致していることが示された。
さらに, 本モデルでは, 肺結節診断において, 競合分類と結節属性スコアリング性能が有効であることを示す。
関連論文リスト
- CC-DCNet: Dynamic Convolutional Neural Network with Contrastive Constraints for Identifying Lung Cancer Subtypes on Multi-modality Images [13.655407979403945]
肺がんサブタイプを多次元・多モード画像で正確に分類するための新しい深層学習ネットワークを提案する。
提案モデルの強みは, 対のCT-病理画像セットと独立のCT画像セットの両方を動的に処理できることにある。
また,ネットワーク学習を通じてモダリティ関係を定量的にマッピングするコントラスト制約モジュールも開発した。
論文 参考訳(メタデータ) (2024-07-18T01:42:00Z) - Evaluating Explanatory Capabilities of Machine Learning Models in Medical Diagnostics: A Human-in-the-Loop Approach [0.0]
我々は、膵癌治療の確立に関係するさまざまな特徴の重要性を確立するために、Human-in-the-Loop関連技術と医療ガイドラインをドメイン知識の源泉として使用しています。
本稿では,説明結果の解釈を容易にするため,重み付きジャカード類似度係数などの類似度尺度を提案する。
論文 参考訳(メタデータ) (2024-03-28T20:11:34Z) - Histopathologic Cancer Detection [0.0]
この作業では、PatchCamelyonベンチマークデータセットを使用して、モデルをマルチレイヤのパーセプトロンと畳み込みモデルでトレーニングし、精度の高いリコール、F1スコア、精度、AUCスコアでモデルのパフォーマンスを観察する。
また,データ拡張を伴うResNet50とInceptionNetモデルを導入し,ResNet50が最先端モデルに勝てることを示す。
論文 参考訳(メタデータ) (2023-11-13T19:51:46Z) - Robust and Interpretable Medical Image Classifiers via Concept
Bottleneck Models [49.95603725998561]
本稿では,自然言語の概念を用いた堅牢で解釈可能な医用画像分類器を構築するための新しいパラダイムを提案する。
具体的には、まず臨床概念をGPT-4から検索し、次に視覚言語モデルを用いて潜在画像の特徴を明示的な概念に変換する。
論文 参考訳(メタデータ) (2023-10-04T21:57:09Z) - Towards Trustable Skin Cancer Diagnosis via Rewriting Model's Decision [12.306688233127312]
本稿では,モデルトレーニングプロセスにHuman-in-the-loopフレームワークを導入する。
提案手法は, 共起因子を自動的に検出する。
容易に得られる概念の模範を用いて、相反する概念を学習することができる。
論文 参考訳(メタデータ) (2023-03-02T01:02:18Z) - Faithful learning with sure data for lung nodule diagnosis [34.55176532924471]
結節分類を確実にするための協調学習フレームワークを提案する。
損失関数は,ノード分割マップに規制された解釈可能性制約を導入することで,信頼性の高い特徴を学習するように設計されている。
論文 参考訳(メタデータ) (2022-02-25T06:33:11Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
本稿では, セグメンテーションによる異常胸部X線(CXR)識別性能を向上させるための深層学習手法を提案する。
提案手法は,CXR画像中の肺領域を局所化するための深層ニューラルネットワーク(XLSor)と,大規模CXRデータセットで事前学習した自己教師あり運動量コントラスト(MoCo)モデルのバックボーンを用いたCXR分類モデルである。
論文 参考訳(メタデータ) (2022-02-22T15:24:06Z) - What Do You See in this Patient? Behavioral Testing of Clinical NLP
Models [69.09570726777817]
本稿では,入力の変化に関する臨床結果モデルの振る舞いを評価する拡張可能なテストフレームワークを提案する。
私たちは、同じデータを微調整しても、モデル行動は劇的に変化し、最高のパフォーマンスのモデルが常に最も医学的に可能なパターンを学習していないことを示しています。
論文 参考訳(メタデータ) (2021-11-30T15:52:04Z) - BI-RADS-Net: An Explainable Multitask Learning Approach for Cancer
Diagnosis in Breast Ultrasound Images [69.41441138140895]
本稿では,乳房超音波画像における癌検出のための新しい深層学習手法であるBI-RADS-Netを紹介する。
提案手法は, 臨床診断に関連する特徴表現を学習することにより, 乳腺腫瘍の説明と分類を行うタスクを取り入れたものである。
臨床医が医療現場で診断・報告するために使用する形態学的特徴の観点から予測(良性または悪性)の説明が提供される。
論文 参考訳(メタデータ) (2021-10-05T19:14:46Z) - A multi-stage machine learning model on diagnosis of esophageal
manometry [50.591267188664666]
このフレームワークには、飲み込みレベルにおけるディープラーニングモデルと、学習レベルにおける機能ベースの機械学習モデルが含まれている。
これは、生のマルチスワローデータからHRM研究のCC診断を自動的に予測する最初の人工知能モデルである。
論文 参考訳(メタデータ) (2021-06-25T20:09:23Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
我々は,X線に基づく疾患分類のための新しい確率的推論フレームワークである反復的知識蒸留(VKD)を提案する。
提案手法の有効性を,X線画像とEHRを用いた3つの公開ベンチマークデータセットに示す。
論文 参考訳(メタデータ) (2021-03-19T14:13:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。