論文の概要: Subspace Node Pruning
- arxiv url: http://arxiv.org/abs/2405.17506v1
- Date: Sun, 26 May 2024 14:27:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-29 23:50:45.004677
- Title: Subspace Node Pruning
- Title(参考訳): Subspace Node Pruning
- Authors: Joshua Offergeld, Marcel van Gerven, Nasir Ahmad,
- Abstract要約: ノードプルーニング(node pruning)は、ネットワーク性能を最大に保ちながら、計算ユニットを除去する技術である。
プルーニング中にネットワークパラメータを再編成することで、パフォーマンスを回復する能力を利用した以前の研究はほとんどない。
本手法は,残余ネットワークなど他のネットワークアーキテクチャにも拡張可能であることを示す。
- 参考スコア(独自算出の注目度): 2.3125457626961263
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A significant increase in the commercial use of deep neural network models increases the need for efficient AI. Node pruning is the art of removing computational units such as neurons, filters, attention heads, or even entire layers while keeping network performance at a maximum. This can significantly reduce the inference time of a deep network and thus enhance its efficiency. Few of the previous works have exploited the ability to recover performance by reorganizing network parameters while pruning. In this work, we propose to create a subspace from unit activations which enables node pruning while recovering maximum accuracy. We identify that for effective node pruning, a subspace can be created using a triangular transformation matrix, which we show to be equivalent to Gram-Schmidt orthogonalization, which automates this procedure. We further improve this method by reorganizing the network prior to subspace formation. Finally, we leverage the orthogonal subspaces to identify layer-wise pruning ratios appropriate to retain a significant amount of the layer-wise information. We show that this measure outperforms existing pruning methods on VGG networks. We further show that our method can be extended to other network architectures such as residual networks.
- Abstract(参考訳): ディープニューラルネットワークモデルの商用利用が大幅に増加したことで、効率的なAIの必要性が高まっている。
ノードプルーニング(ノードプルーニング)とは、ニューロン、フィルタ、アテンションヘッド、さらには層全体の計算ユニットを除去し、ネットワーク性能を最大に保つ技術である。
これにより、ディープネットワークの推論時間が大幅に短縮され、効率が向上する。
プルーニング中にネットワークパラメータを再編成することで、パフォーマンスを回復する能力を利用した以前の研究はほとんどない。
本研究では,最大精度を回復しながらノードのプルーニングを可能にするユニットアクティベーションからサブスペースを作成することを提案する。
実効ノードプルーニングでは, 三角変換行列を用いて部分空間を作成でき, この手順を自動化したGram-Schmidt直交化と同値であることを示す。
サブスペース形成前にネットワークを再編成することで,この手法をさらに改良する。
最後に、直交部分空間を利用して、レイヤーワイド情報のかなりの量の保持に適した層ワイドプルーニング比を同定する。
本稿では,VGGネットワーク上での既存のプルーニング手法よりも優れた性能を示す。
さらに,残余ネットワークなど他のネットワークアーキテクチャにも拡張可能であることを示す。
関連論文リスト
- A Generalization of Continuous Relaxation in Structured Pruning [0.3277163122167434]
トレンドは、パラメータが増加するより深い、より大きなニューラルネットワークが、より小さなニューラルネットワークよりも高い精度を達成することを示している。
ネットワーク拡張, プルーニング, サブネットワーク崩壊, 削除のためのアルゴリズムを用いて, 構造化プルーニングを一般化する。
結果のCNNは計算コストのかかるスパース行列演算を使わずにGPUハードウェア上で効率的に実行される。
論文 参考訳(メタデータ) (2023-08-28T14:19:13Z) - Boosting Pruned Networks with Linear Over-parameterization [8.796518772724955]
構造化プルーニングは、高速な推論のためのチャネル(フィルタ)を減らし、実行時にフットプリントを低くすることで、ニューラルネットワークを圧縮する。
プルーニング後の精度を回復するため、細調整は通常、プルーニングネットワークに適用される。
そこで我々は,まず,細調整パラメータの数を増やすために,刈り込みネットワーク内のコンパクト層を線形に過剰にパラメータ化する手法を提案する。
論文 参考訳(メタデータ) (2022-04-25T05:30:26Z) - Edge Rewiring Goes Neural: Boosting Network Resilience via Policy
Gradient [62.660451283548724]
ResiNetは、さまざまな災害や攻撃に対する回復力のあるネットワークトポロジを発見するための強化学習フレームワークである。
ResiNetは複数のグラフに対してほぼ最適のレジリエンス向上を実現し,ユーティリティのバランスを保ちながら,既存のアプローチに比べて大きなマージンを持つことを示す。
論文 参考訳(メタデータ) (2021-10-18T06:14:28Z) - Structured Convolutions for Efficient Neural Network Design [65.36569572213027]
畳み込みニューラルネットワーク構築ブロックのテクスト単純構造における冗長性を利用してモデル効率に取り組む。
この分解が2Dカーネルや3Dカーネルだけでなく、完全に接続されたレイヤにも適用可能であることを示す。
論文 参考訳(メタデータ) (2020-08-06T04:38:38Z) - Rapid Structural Pruning of Neural Networks with Set-based Task-Adaptive
Meta-Pruning [83.59005356327103]
既存のプルーニング技術に共通する制限は、プルーニングの前に少なくとも1回はネットワークの事前トレーニングが必要であることである。
本稿では,ターゲットデータセットの関数としてプルーニングマスクを生成することにより,大規模な参照データセット上で事前訓練されたネットワークをタスク適応的にプルークするSTAMPを提案する。
ベンチマークデータセット上での最近の先進的なプルーニング手法に対するSTAMPの有効性を検証する。
論文 参考訳(メタデータ) (2020-06-22T10:57:43Z) - Joint Multi-Dimension Pruning via Numerical Gradient Update [120.59697866489668]
本稿では,空間,深さ,チャネルの3つの重要な側面において,ネットワークを同時に切断する方法であるジョイント・マルチディメンジョン・プルーニング(ジョイント・プルーニング)を提案する。
本手法は,1つのエンドツーエンドトレーニングにおいて3次元にわたって協調的に最適化され,従来よりも効率がよいことを示す。
論文 参考訳(メタデータ) (2020-05-18T17:57:09Z) - Network Adjustment: Channel Search Guided by FLOPs Utilization Ratio [101.84651388520584]
本稿では,ネットワークの精度をFLOPの関数として考慮した,ネットワーク調整という新しいフレームワークを提案する。
標準画像分類データセットと幅広いベースネットワークの実験は、我々のアプローチの有効性を実証している。
論文 参考訳(メタデータ) (2020-04-06T15:51:00Z) - DHP: Differentiable Meta Pruning via HyperNetworks [158.69345612783198]
本稿では,ネットワークの自動プルーニングのためのハイパーネットによる識別可能なプルーニング手法を提案する。
遅延ベクトルは、バックボーンネットワーク内の畳み込み層の出力チャネルを制御し、レイヤのプルーニングのハンドルとして機能する。
画像分類、単一画像超解像、復調のための様々なネットワークで実験が行われた。
論文 参考訳(メタデータ) (2020-03-30T17:59:18Z) - Knapsack Pruning with Inner Distillation [11.04321604965426]
そこで本研究では,プルーンドネットワークの最終精度を最適化する新しいプルーニング手法を提案する。
ネットワークの高レベル構造を維持しながら、ネットワークチャネルを熟考する。
提案手法は,ResNetバックボーンを用いたImageNet,CIFAR-10,CIFAR-100における最先端のプルーニング結果をもたらす。
論文 参考訳(メタデータ) (2020-02-19T16:04:48Z) - Mixed-Precision Quantized Neural Network with Progressively Decreasing
Bitwidth For Image Classification and Object Detection [21.48875255723581]
ビット幅が徐々に増大する混合精度量子化ニューラルネットワークを提案し,精度と圧縮のトレードオフを改善する。
典型的なネットワークアーキテクチャとベンチマークデータセットの実験は、提案手法がより良い結果または同等の結果が得られることを示した。
論文 参考訳(メタデータ) (2019-12-29T14:11:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。