Assessment of Left Atrium Motion Deformation Through Full Cardiac Cycle
- URL: http://arxiv.org/abs/2405.17518v1
- Date: Mon, 27 May 2024 09:31:24 GMT
- Title: Assessment of Left Atrium Motion Deformation Through Full Cardiac Cycle
- Authors: Abdul Qayyum, Moona Mazher, Angela Lee, Jose A Solis-Lemus, Imran Razzak, Steven A Niederer,
- Abstract summary: Left Atrium (LA) presents distinctive challenges, including much thinner myocardial walls, complex and irregular morphology, as well as diversity in individual's structure.
We are the first to present comprehensive technical workflow designed for 4D registration modeling to automatically analyze LA motion using high-resolution 3D Cine MR images.
Our findings show the potential of proposed end to end framework in providing clinicians with novel regional biomarkers for left atrium motion tracking and deformation.
- Score: 9.077680726058382
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Unlike Right Atrium (RA), Left Atrium (LA) presents distinctive challenges, including much thinner myocardial walls, complex and irregular morphology, as well as diversity in individual's structure, making off-the-shelf methods designed for the Left Ventricle (LV) may not work in the context of the left atrium. To overcome aforementioned challenges, we are the first to present comprehensive technical workflow designed for 4D registration modeling to automatically analyze LA motion using high-resolution 3D Cine MR images. We integrate segmentation network and 4D registration process to precisely delineate LA segmentation throughout the full cardiac cycle. Additionally, an image 4D registration network is employed to extract LA displacement vector fields (DVFs). Our findings show the potential of proposed end to end framework in providing clinicians with novel regional biomarkers for left atrium motion tracking and deformation, carrying significant clinical implications.
Related papers
- Epicardium Prompt-guided Real-time Cardiac Ultrasound Frame-to-volume Registration [50.602074919305636]
This paper introduces a lightweight end-to-end Cardiac Ultrasound frame-to-volume Registration network, termed CU-Reg.
We use epicardium prompt-guided anatomical clues to reinforce the interaction of 2D sparse and 3D dense features, followed by a voxel-wise local-global aggregation of enhanced features.
arXiv Detail & Related papers (2024-06-20T17:47:30Z) - High-resolution 3D Maps of Left Atrial Displacements using an
Unsupervised Image Registration Neural Network [2.4633187637169303]
Functional analysis of the left atrium (LA) plays an increasingly important role in the prognosis and diagnosis of cardiovascular diseases.
We propose a tool that automatically segments the LA and extracts the displacement fields across the cardiac cycle.
The pipeline is able to accurately track the LA wall across the cardiac cycle with an average Hausdorff distance of $2.51 pm 1.3mm$ and Dice score of 92 pm 0.02$.
arXiv Detail & Related papers (2023-09-05T12:33:05Z) - On the Localization of Ultrasound Image Slices within Point Distribution
Models [84.27083443424408]
Thyroid disorders are most commonly diagnosed using high-resolution Ultrasound (US)
Longitudinal tracking is a pivotal diagnostic protocol for monitoring changes in pathological thyroid morphology.
We present a framework for automated US image slice localization within a 3D shape representation.
arXiv Detail & Related papers (2023-09-01T10:10:46Z) - Deep learning network to correct axial and coronal eye motion in 3D OCT
retinal imaging [65.47834983591957]
We propose deep learning based neural networks to correct axial and coronal motion artifacts in OCT based on a single scan.
The experimental result shows that the proposed method can effectively correct motion artifacts and achieve smaller error than other methods.
arXiv Detail & Related papers (2023-05-27T03:55:19Z) - DeepRecon: Joint 2D Cardiac Segmentation and 3D Volume Reconstruction
via A Structure-Specific Generative Method [12.26150675728958]
We propose an end-to-end latent-space-based framework, DeepRecon, that generates multiple clinically essential outcomes.
Our method identifies the optimal latent representation of the cine image that contains accurate semantic information for cardiac structures.
In particular, our model jointly generates synthetic images with accurate semantic information and segmentation of the cardiac structures.
arXiv Detail & Related papers (2022-06-14T20:46:11Z) - Three-Dimensional Segmentation of the Left Ventricle in Late Gadolinium
Enhanced MR Images of Chronic Infarction Combining Long- and Short-Axis
Information [5.947543669357994]
We present a comprehensive framework for automatic 3D segmentation of the LV in LGE CMR images.
We propose a novel parametric model of the LV for consistent myocardial edge points detection.
We have evaluated the proposed framework with 21 sets of real patient and 4 sets of simulated phantom data.
arXiv Detail & Related papers (2022-05-21T09:47:50Z) - An Algorithm for the Labeling and Interactive Visualization of the
Cerebrovascular System of Ischemic Strokes [59.116811751334225]
VirtualDSA++ is an algorithm designed to segment and label the cerebrovascular tree on CTA scans.
We extend the labeling mechanism for the cerebral arteries to identify occluded vessels.
We present the generic concept of iterative systematic search for pathways on all nodes of said model, which enables new interactive features.
arXiv Detail & Related papers (2022-04-26T14:20:26Z) - Segmentation of Cardiac Structures via Successive Subspace Learning with
Saab Transform from Cine MRI [29.894633364282555]
We propose a machine learning model, successive subspace learning with the subspace approximation with adjusted bias (Saab) transform, for accurate and efficient segmentation from cine MRI.
Our framework performed better than state-of-the-art U-Net models with 200$times$ fewer parameters in the left ventricle, right ventricle, and myocardium.
arXiv Detail & Related papers (2021-07-22T14:50:48Z) - Joint Motion Correction and Super Resolution for Cardiac Segmentation
via Latent Optimisation [18.887520377396925]
We propose a novel latent optimisation framework that jointly performs motion correction and super resolution for cardiac image segmentations.
Experiments on two cardiac MR datasets show that the proposed framework achieves high performance, comparable to state-of-the-art super-resolution approaches.
arXiv Detail & Related papers (2021-07-08T15:14:00Z) - Deep Negative Volume Segmentation [60.44793799306154]
We propose a new angle to the 3D segmentation task: segment empty spaces between all the tissues surrounding the object.
Our approach is an end-to-end pipeline that comprises a V-Net for bone segmentation.
We validate the idea on the CT scans in a 50-patient dataset, annotated by experts in maxillofacial medicine.
arXiv Detail & Related papers (2020-06-22T16:55:23Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
" 2018 Left Atrium Challenge" using 154 3D LGE-MRIs, currently the world's largest cardiac LGE-MRI dataset.
Analyse of the submitted algorithms using technical and biological metrics was performed.
Results show the top method achieved a dice score of 93.2% and a mean surface to a surface distance of 0.7 mm.
arXiv Detail & Related papers (2020-04-26T08:49:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.