On the Localization of Ultrasound Image Slices within Point Distribution
Models
- URL: http://arxiv.org/abs/2309.00372v1
- Date: Fri, 1 Sep 2023 10:10:46 GMT
- Title: On the Localization of Ultrasound Image Slices within Point Distribution
Models
- Authors: Lennart Bastian, Vincent B\"urgin, Ha Young Kim, Alexander Baumann,
Benjamin Busam, Mahdi Saleh, Nassir Navab
- Abstract summary: Thyroid disorders are most commonly diagnosed using high-resolution Ultrasound (US)
Longitudinal tracking is a pivotal diagnostic protocol for monitoring changes in pathological thyroid morphology.
We present a framework for automated US image slice localization within a 3D shape representation.
- Score: 84.27083443424408
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Thyroid disorders are most commonly diagnosed using high-resolution
Ultrasound (US). Longitudinal nodule tracking is a pivotal diagnostic protocol
for monitoring changes in pathological thyroid morphology. This task, however,
imposes a substantial cognitive load on clinicians due to the inherent
challenge of maintaining a mental 3D reconstruction of the organ. We thus
present a framework for automated US image slice localization within a 3D shape
representation to ease how such sonographic diagnoses are carried out. Our
proposed method learns a common latent embedding space between US image patches
and the 3D surface of an individual's thyroid shape, or a statistical
aggregation in the form of a statistical shape model (SSM), via contrastive
metric learning. Using cross-modality registration and Procrustes analysis, we
leverage features from our model to register US slices to a 3D mesh
representation of the thyroid shape. We demonstrate that our multi-modal
registration framework can localize images on the 3D surface topology of a
patient-specific organ and the mean shape of an SSM. Experimental results
indicate slice positions can be predicted within an average of 1.2 mm of the
ground-truth slice location on the patient-specific 3D anatomy and 4.6 mm on
the SSM, exemplifying its usefulness for slice localization during sonographic
acquisitions. Code is publically available:
\href{https://github.com/vuenc/slice-to-shape}{https://github.com/vuenc/slice-to-shape}
Related papers
- Improving 3D Medical Image Segmentation at Boundary Regions using Local Self-attention and Global Volume Mixing [14.0825980706386]
Volumetric medical image segmentation is a fundamental problem in medical image analysis where the objective is to accurately classify a given 3D volumetric medical image with voxel-level precision.
In this work, we propose a novel hierarchical encoder-decoder-based framework that strives to explicitly capture the local and global dependencies for 3D medical image segmentation.
The proposed framework exploits local volume-based self-attention to encode the local dependencies at high resolution and introduces a novel volumetric-mixer to capture the global dependencies at low-resolution feature representations.
arXiv Detail & Related papers (2024-10-20T11:08:38Z) - Generative Enhancement for 3D Medical Images [74.17066529847546]
We propose GEM-3D, a novel generative approach to the synthesis of 3D medical images.
Our method begins with a 2D slice, noted as the informed slice to serve the patient prior, and propagates the generation process using a 3D segmentation mask.
By decomposing the 3D medical images into masks and patient prior information, GEM-3D offers a flexible yet effective solution for generating versatile 3D images.
arXiv Detail & Related papers (2024-03-19T15:57:04Z) - Multi-View Vertebra Localization and Identification from CT Images [57.56509107412658]
We propose a multi-view vertebra localization and identification from CT images.
We convert the 3D problem into a 2D localization and identification task on different views.
Our method can learn the multi-view global information naturally.
arXiv Detail & Related papers (2023-07-24T14:43:07Z) - End-to-end Deformable Attention Graph Neural Network for Single-view
Liver Mesh Reconstruction [2.285821277711784]
We propose a novel end-to-end attention graph neural network model that generates in real-time a triangular shape of the liver.
The proposed method achieves results with an average error of 3.06 +- 0.7 mm and Chamfer distance with L2 norm of 63.14 +- 27.28.
arXiv Detail & Related papers (2023-03-13T19:15:49Z) - Explainable multiple abnormality classification of chest CT volumes with
AxialNet and HiResCAM [89.2175350956813]
We introduce the challenging new task of explainable multiple abnormality classification in volumetric medical images.
We propose a multiple instance learning convolutional neural network, AxialNet, that allows identification of top slices for each abnormality.
We then aim to improve the model's learning through a novel mask loss that leverages HiResCAM and 3D allowed regions.
arXiv Detail & Related papers (2021-11-24T01:14:33Z) - IGCN: Image-to-graph Convolutional Network for 2D/3D Deformable
Registration [1.2246649738388387]
We propose an image-to-graph convolutional network that achieves deformable registration of a 3D organ mesh for a single-viewpoint 2D projection image.
We show shape prediction considering relationships among multiple organs can be used to predict respiratory motion and deformation from radiographs with clinically acceptable accuracy.
arXiv Detail & Related papers (2021-10-31T12:48:37Z) - Revisiting 3D Context Modeling with Supervised Pre-training for
Universal Lesion Detection in CT Slices [48.85784310158493]
We propose a Modified Pseudo-3D Feature Pyramid Network (MP3D FPN) to efficiently extract 3D context enhanced 2D features for universal lesion detection in CT slices.
With the novel pre-training method, the proposed MP3D FPN achieves state-of-the-art detection performance on the DeepLesion dataset.
The proposed 3D pre-trained weights can potentially be used to boost the performance of other 3D medical image analysis tasks.
arXiv Detail & Related papers (2020-12-16T07:11:16Z) - Enhanced 3D Myocardial Strain Estimation from Multi-View 2D CMR Imaging [0.0]
We propose an enhanced 3D myocardial strain estimation procedure, which combines complementary displacement information from multiple orientations of a single imaging modality (untagged CMR SSFP images)
We register the sets of short-axis, four-chamber and two-chamber views via a 2D non-rigid registration algorithm implemented in a commercial software (Segment, Medviso)
We then create a series of interpolating functions for the three directions of motion and use them to deform a tetrahedral mesh representation of a patient-specific left ventricle.
arXiv Detail & Related papers (2020-09-25T22:47:50Z) - Modelling the Distribution of 3D Brain MRI using a 2D Slice VAE [66.63629641650572]
We propose a method to model 3D MR brain volumes distribution by combining a 2D slice VAE with a Gaussian model that captures the relationships between slices.
We also introduce a novel evaluation method for generated volumes that quantifies how well their segmentations match those of true brain anatomy.
arXiv Detail & Related papers (2020-07-09T13:23:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.