ClassDiffusion: More Aligned Personalization Tuning with Explicit Class Guidance
- URL: http://arxiv.org/abs/2405.17532v1
- Date: Mon, 27 May 2024 17:50:10 GMT
- Title: ClassDiffusion: More Aligned Personalization Tuning with Explicit Class Guidance
- Authors: Jiannan Huang, Jun Hao Liew, Hanshu Yan, Yuyang Yin, Yao Zhao, Yunchao Wei,
- Abstract summary: We present ClassDiffusion, a technique that leverages a semantic preservation loss to explicitly regulate the concept space when learning the new concept.
Despite its simplicity, this helps avoid semantic drift when fine-tuning on the target concepts.
In response to the ineffective evaluation of CLIP-T metrics, we introduce BLIP2-T metric.
- Score: 78.44823280247438
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Recent text-to-image customization works have been proven successful in generating images of given concepts by fine-tuning the diffusion models on a few examples. However, these methods tend to overfit the concepts, resulting in failure to create the concept under multiple conditions (e.g. headphone is missing when generating a <sks> dog wearing a headphone'). Interestingly, we notice that the base model before fine-tuning exhibits the capability to compose the base concept with other elements (e.g. a dog wearing a headphone) implying that the compositional ability only disappears after personalization tuning. Inspired by this observation, we present ClassDiffusion, a simple technique that leverages a semantic preservation loss to explicitly regulate the concept space when learning the new concept. Despite its simplicity, this helps avoid semantic drift when fine-tuning on the target concepts. Extensive qualitative and quantitative experiments demonstrate that the use of semantic preservation loss effectively improves the compositional abilities of the fine-tune models. In response to the ineffective evaluation of CLIP-T metrics, we introduce BLIP2-T metric, a more equitable and effective evaluation metric for this particular domain. We also provide in-depth empirical study and theoretical analysis to better understand the role of the proposed loss. Lastly, we also extend our ClassDiffusion to personalized video generation, demonstrating its flexibility.
Related papers
- Scaling Concept With Text-Guided Diffusion Models [53.80799139331966]
Instead of replacing a concept, can we enhance or suppress the concept itself?
We introduce ScalingConcept, a simple yet effective method to scale decomposed concepts up or down in real input without introducing new elements.
More importantly, ScalingConcept enables a variety of novel zero-shot applications across image and audio domains.
arXiv Detail & Related papers (2024-10-31T17:09:55Z) - How to Continually Adapt Text-to-Image Diffusion Models for Flexible Customization? [91.49559116493414]
We propose a novel Concept-Incremental text-to-image Diffusion Model (CIDM)
It can resolve catastrophic forgetting and concept neglect to learn new customization tasks in a concept-incremental manner.
Experiments validate that our CIDM surpasses existing custom diffusion models.
arXiv Detail & Related papers (2024-10-23T06:47:29Z) - Beyond Concept Bottleneck Models: How to Make Black Boxes Intervenable? [8.391254800873599]
We introduce a method to perform concept-based interventions on pretrained neural networks, which are not interpretable by design.
We formalise the notion of intervenability as a measure of the effectiveness of concept-based interventions and leverage this definition to fine-tune black boxes.
arXiv Detail & Related papers (2024-01-24T16:02:14Z) - On the Dynamics Under the Unhinged Loss and Beyond [104.49565602940699]
We introduce the unhinged loss, a concise loss function, that offers more mathematical opportunities to analyze closed-form dynamics.
The unhinged loss allows for considering more practical techniques, such as time-vary learning rates and feature normalization.
arXiv Detail & Related papers (2023-12-13T02:11:07Z) - Concept Distillation: Leveraging Human-Centered Explanations for Model
Improvement [3.026365073195727]
Concept Activation Vectors (CAVs) estimate a model's sensitivity and possible biases to a given concept.
We extend CAVs from post-hoc analysis to ante-hoc training in order to reduce model bias through fine-tuning.
We show applications of concept-sensitive training to debias several classification problems.
arXiv Detail & Related papers (2023-11-26T14:00:14Z) - Interpreting Pretrained Language Models via Concept Bottlenecks [55.47515772358389]
Pretrained language models (PLMs) have made significant strides in various natural language processing tasks.
The lack of interpretability due to their black-box'' nature poses challenges for responsible implementation.
We propose a novel approach to interpreting PLMs by employing high-level, meaningful concepts that are easily understandable for humans.
arXiv Detail & Related papers (2023-11-08T20:41:18Z) - Hierarchical Semantic Tree Concept Whitening for Interpretable Image
Classification [19.306487616731765]
Post-hoc analysis can only discover the patterns or rules that naturally exist in models.
We proactively instill knowledge to alter the representation of human-understandable concepts in hidden layers.
Our method improves model interpretability, showing better disentanglement of semantic concepts, without negatively affecting model classification performance.
arXiv Detail & Related papers (2023-07-10T04:54:05Z) - Statistically Significant Concept-based Explanation of Image Classifiers
via Model Knockoffs [22.576922942465142]
Concept-based explanations may cause false positives, which misregards unrelated concepts as important for the prediction task.
We propose a method using a deep learning model to learn the image concept and then using the Knockoff samples to select the important concepts for prediction.
arXiv Detail & Related papers (2023-05-27T05:40:05Z) - Mnemonics Training: Multi-Class Incremental Learning without Forgetting [131.1065577648532]
Multi-Class Incremental Learning (MCIL) aims to learn new concepts by incrementally updating a model trained on previous concepts.
This paper proposes a novel and automatic framework we call mnemonics, where we parameterize exemplars and make them optimizable in an end-to-end manner.
We conduct extensive experiments on three MCIL benchmarks, CIFAR-100, ImageNet-Subset and ImageNet, and show that using mnemonics exemplars can surpass the state-of-the-art by a large margin.
arXiv Detail & Related papers (2020-02-24T12:55:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.