Beyond Concept Bottleneck Models: How to Make Black Boxes Intervenable?
- URL: http://arxiv.org/abs/2401.13544v3
- Date: Sat, 26 Oct 2024 12:00:50 GMT
- Title: Beyond Concept Bottleneck Models: How to Make Black Boxes Intervenable?
- Authors: Sonia Laguna, Ričards Marcinkevičs, Moritz Vandenhirtz, Julia E. Vogt,
- Abstract summary: We introduce a method to perform concept-based interventions on pretrained neural networks, which are not interpretable by design.
We formalise the notion of intervenability as a measure of the effectiveness of concept-based interventions and leverage this definition to fine-tune black boxes.
- Score: 8.391254800873599
- License:
- Abstract: Recently, interpretable machine learning has re-explored concept bottleneck models (CBM). An advantage of this model class is the user's ability to intervene on predicted concept values, affecting the downstream output. In this work, we introduce a method to perform such concept-based interventions on pretrained neural networks, which are not interpretable by design, only given a small validation set with concept labels. Furthermore, we formalise the notion of intervenability as a measure of the effectiveness of concept-based interventions and leverage this definition to fine-tune black boxes. Empirically, we explore the intervenability of black-box classifiers on synthetic tabular and natural image benchmarks. We focus on backbone architectures of varying complexity, from simple, fully connected neural nets to Stable Diffusion. We demonstrate that the proposed fine-tuning improves intervention effectiveness and often yields better-calibrated predictions. To showcase the practical utility of our techniques, we apply them to deep chest X-ray classifiers and show that fine-tuned black boxes are more intervenable than CBMs. Lastly, we establish that our methods are still effective under vision-language-model-based concept annotations, alleviating the need for a human-annotated validation set.
Related papers
- Bayesian Concept Bottleneck Models with LLM Priors [9.368695619127084]
Concept Bottleneck Models (CBMs) have been proposed as a compromise between white-box and black-box models, aiming to achieve interpretability without sacrificing accuracy.
This work investigates a novel approach that sidesteps these challenges: BC-LLM iteratively searches over a potentially infinite set of concepts within a Bayesian framework, in which Large Language Models (LLMs) serve as both a concept extraction mechanism and prior.
arXiv Detail & Related papers (2024-10-21T01:00:33Z) - MulCPred: Learning Multi-modal Concepts for Explainable Pedestrian Action Prediction [57.483718822429346]
MulCPred is proposed that explains its predictions based on multi-modal concepts represented by training samples.
MulCPred is evaluated on multiple datasets and tasks.
arXiv Detail & Related papers (2024-09-14T14:15:28Z) - Discover-then-Name: Task-Agnostic Concept Bottlenecks via Automated Concept Discovery [52.498055901649025]
Concept Bottleneck Models (CBMs) have been proposed to address the 'black-box' problem of deep neural networks.
We propose a novel CBM approach -- called Discover-then-Name-CBM (DN-CBM) -- that inverts the typical paradigm.
Our concept extraction strategy is efficient, since it is agnostic to the downstream task, and uses concepts already known to the model.
arXiv Detail & Related papers (2024-07-19T17:50:11Z) - Concept Bottleneck Models Without Predefined Concepts [26.156636891713745]
We introduce an input-dependent concept selection mechanism that ensures only a small subset of concepts is used across all classes.
We show that our approach improves downstream performance and narrows the performance gap to black-box models.
arXiv Detail & Related papers (2024-07-04T13:34:50Z) - ClassDiffusion: More Aligned Personalization Tuning with Explicit Class Guidance [78.44823280247438]
We present ClassDiffusion, a technique that leverages a semantic preservation loss to explicitly regulate the concept space when learning the new concept.
Despite its simplicity, this helps avoid semantic drift when fine-tuning on the target concepts.
In response to the ineffective evaluation of CLIP-T metrics, we introduce BLIP2-T metric.
arXiv Detail & Related papers (2024-05-27T17:50:10Z) - Improving Intervention Efficacy via Concept Realignment in Concept Bottleneck Models [57.86303579812877]
Concept Bottleneck Models (CBMs) ground image classification on human-understandable concepts to allow for interpretable model decisions.
Existing approaches often require numerous human interventions per image to achieve strong performances.
We introduce a trainable concept realignment intervention module, which leverages concept relations to realign concept assignments post-intervention.
arXiv Detail & Related papers (2024-05-02T17:59:01Z) - Sparse Concept Bottleneck Models: Gumbel Tricks in Contrastive Learning [86.15009879251386]
We propose a novel architecture and method of explainable classification with Concept Bottleneck Models (CBM)
CBMs require an additional set of concepts to leverage.
We show a significant increase in accuracy using sparse hidden layers in CLIP-based bottleneck models.
arXiv Detail & Related papers (2024-04-04T09:43:43Z) - Black-Box Tuning of Vision-Language Models with Effective Gradient
Approximation [71.21346469382821]
We introduce collaborative black-box tuning (CBBT) for both textual prompt optimization and output feature adaptation for black-box models.
CBBT is extensively evaluated on eleven downstream benchmarks and achieves remarkable improvements compared to existing black-box VL adaptation methods.
arXiv Detail & Related papers (2023-12-26T06:31:28Z) - Auxiliary Losses for Learning Generalizable Concept-based Models [5.4066453042367435]
Concept Bottleneck Models (CBMs) have gained popularity since their introduction.
CBMs essentially limit the latent space of a model to human-understandable high-level concepts.
We propose cooperative-Concept Bottleneck Model (coop-CBM) to overcome the performance trade-off.
arXiv Detail & Related papers (2023-11-18T15:50:07Z) - Learning to Receive Help: Intervention-Aware Concept Embedding Models [44.1307928713715]
Concept Bottleneck Models (CBMs) tackle the opacity of neural architectures by constructing and explaining their predictions using a set of high-level concepts.
Recent work has shown that intervention efficacy can be highly dependent on the order in which concepts are intervened.
We propose Intervention-aware Concept Embedding models (IntCEMs), a novel CBM-based architecture and training paradigm that improves a model's receptiveness to test-time interventions.
arXiv Detail & Related papers (2023-09-29T02:04:24Z) - Concept Bottleneck Model with Additional Unsupervised Concepts [0.5939410304994348]
We propose a novel interpretable model based on the concept bottleneck model (CBM)
CBM uses concept labels to train an intermediate layer as the additional visible layer.
By seamlessly training these two types of concepts while reducing the amount of computation, we can obtain both supervised and unsupervised concepts simultaneously.
arXiv Detail & Related papers (2022-02-03T08:30:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.