論文の概要: A deep-learning algorithm to disentangle self-interacting dark matter and AGN feedback models
- arxiv url: http://arxiv.org/abs/2405.17566v1
- Date: Mon, 27 May 2024 18:00:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-29 23:31:09.201379
- Title: A deep-learning algorithm to disentangle self-interacting dark matter and AGN feedback models
- Title(参考訳): 自己相互作用暗黒物質とAGNフィードバックモデルとをアンタングル化するディープラーニングアルゴリズム
- Authors: David Harvey,
- Abstract要約: 本研究では,ダークマターの自己反応が天体物理学的フィードバックとどのように異なるのかを「学習」する機械学習手法を提案する。
我々は、流体力学シミュレーションから銀河団の画像に畳み込みニューラルネットワークを訓練する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Different models of dark matter can alter the distribution of mass in galaxy clusters in a variety of ways. However, so can uncertain astrophysical feedback mechanisms. Here we present a Machine Learning method that ''learns'' how the impact of dark matter self-interactions differs from that of astrophysical feedback in order to break this degeneracy and make inferences on dark matter. We train a Convolutional Neural Network on images of galaxy clusters from hydro-dynamic simulations. In the idealised case our algorithm is 80% accurate at identifying if a galaxy cluster harbours collisionless dark matter, dark matter with ${\sigma}_{\rm DM}/m = 0.1$cm$^2/$g or with ${\sigma}_{DM}/m = 1$cm$^2$/g. Whilst we find adding X-ray emissivity maps does not improve the performance in differentiating collisional dark matter, it does improve the ability to disentangle different models of astrophysical feedback. We include noise to resemble data expected from Euclid and Chandra and find our model has a statistical error of < 0.01cm$^2$/g and that our algorithm is insensitive to shape measurement bias and photometric redshift errors. This method represents a new way to analyse data from upcoming telescopes that is an order of magnitude more precise and many orders faster, enabling us to explore the dark matter parameter space like never before.
- Abstract(参考訳): ダークマターの異なるモデルでは、様々な方法で銀河団内の質量の分布を変えることができる。
しかし、天体物理学的なフィードバック機構は不確実である。
ここでは,ダークマターの自己相互作用の影響が,この縮退を破り,ダークマターに対する推論を行うために,宇宙物理学的なフィードバックとどのように異なるかを「学習」する機械学習手法を提案する。
我々は、流体力学シミュレーションから銀河団の画像に畳み込みニューラルネットワークを訓練する。
理想化された場合、我々のアルゴリズムは、銀河団が衝突のないダークマター、例えば${\sigma}_{\rm DM}/m = 0.1$cm$^2/$g、または${\sigma}_{DM}/m = 1$cm$^2/gのダークマターを80%精度で検出する。
X線放射率マップを追加しても衝突ダークマターの識別性能は向上しないが、天体物理学的フィードバックの異なるモデルを切り離す能力は向上する。
我々は、ユークリッドとチャンドラが予測するデータに類似するノイズを含んでおり、我々のモデルは統計誤差が0.01cm$^2$/gであり、我々のアルゴリズムは測定バイアスや測光赤方偏移誤差に不感である。
この手法は、より正確で多くのオーダーが高速な、近日中の望遠鏡からのデータを分析する新しい方法であり、暗黒物質パラメーター空間をかつてないほど探索することができる。
関連論文リスト
- Cosmology from Galaxy Redshift Surveys with PointNet [65.89809800010927]
宇宙論において、銀河赤方偏移サーベイは、宇宙における位置の置換不変な集まりに類似している。
我々は、ポイントクラウドデータから直接、宇宙パラメータの値を回帰するために、textitPointNetのようなニューラルネットワークを使用します。
我々のPointNetsの実装は、$mathcalO(104) - MathcalO(105)$銀河の入力を一度に分析できるので、この応用の初期の作業は、およそ2桁の精度で改善される。
論文 参考訳(メタデータ) (2022-11-22T15:35:05Z) - Neural Inference of Gaussian Processes for Time Series Data of Quasars [72.79083473275742]
クエーサースペクトルを完全に記述できる新しいモデルを提案する。
また、$textitNeural Inference$というガウス的プロセスパラメータの推論の新しいメソッドも導入しています。
CDRWモデルとNeural Inferenceの組み合わせはベースラインのDRWとMLEを大きく上回っている。
論文 参考訳(メタデータ) (2022-11-17T13:01:26Z) - Semi-Supervised Domain Adaptation for Cross-Survey Galaxy Morphology
Classification and Anomaly Detection [57.85347204640585]
We developed a Universal Domain Adaptation method DeepAstroUDA。
異なるタイプのクラスオーバーラップしたデータセットに適用することができる。
初めて、我々は2つの非常に異なる観測データセットに対するドメイン適応の有効利用を実演した。
論文 参考訳(メタデータ) (2022-11-01T18:07:21Z) - Uncovering dark matter density profiles in dwarf galaxies with graph
neural networks [1.823419686712506]
我々は、これらの系に重力的に結合した恒星の観測可能なキネマティクスから、小銀河のダークマター密度プロファイルを推定する新しい手法を提案する。
本手法は, 暗黒物質分布に強い制約を課すことができ, 暗黒物質ハロの小規模構造に係わるパズルのいくつかを重み付けできる可能性が示唆された。
論文 参考訳(メタデータ) (2022-08-26T18:00:04Z) - Inferring Structural Parameters of Low-Surface-Brightness-Galaxies with
Uncertainty Quantification using Bayesian Neural Networks [70.80563014913676]
ベイズニューラルネットワーク (BNN) を用いて, シミュレーションした低地表面明度銀河画像から, それらのパラメータの不確かさを推測できることを示す。
従来のプロファイル適合法と比較して、BNNを用いて得られた不確実性は等しく、よく校正され、パラメータの点推定は真の値に近いことを示す。
論文 参考訳(メタデータ) (2022-07-07T17:55:26Z) - Learning cosmology and clustering with cosmic graphs [0.0]
我々は、CAMELSプロジェクトの最先端の流体力学シミュレーションから数千の銀河カタログのディープラーニングモデルを訓練する。
まず、GNNが数パーセントの精度で銀河カタログのパワースペクトルを計算することができることを示す。
次に、GNNをトレーニングし、銀河場レベルで可能性のない推論を行う。
論文 参考訳(メタデータ) (2022-04-28T18:00:02Z) - Sensitivity Estimation for Dark Matter Subhalos in Synthetic Gaia DR2
using Deep Learning [0.0]
本稿では, ダークマターサブハロの通過によって位相空間分布が乱れうる恒星を, 機械学習を用いて検出する課題について述べる。
まず、異常検出アルゴリズムを用いて、シミュレーション銀河の摂動の大きさを定量化する。
約50億個の合成星オブザーバブルに最適化された分類アルゴリズムは、軽度だが非ゼロ感度を示す。
論文 参考訳(メタデータ) (2022-03-15T18:00:02Z) - Inferring halo masses with Graph Neural Networks [0.5804487044220691]
我々は、ハローの位置、速度、恒星の質量、銀河の半径を推定するモデルを構築します。
我々は不規則でスパースなデータを扱うように設計されたグラフニューラルネットワーク(GNN)を使用している。
我々のモデルでは、ハロの質量を$sim$0.2 dexの精度で制限することができる。
論文 参考訳(メタデータ) (2021-11-16T18:37:53Z) - AGNet: Weighing Black Holes with Deep Learning [2.4522011090845846]
超大質量ブラックホール (SMBHs) は、ほとんどの銀河の中心に自在に存在する。
従来の方法では、収集に費用がかかる分光データを必要とする。
準光時間系列を用いたSMBHの重み付けアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-08-17T16:45:11Z) - DeepShadows: Separating Low Surface Brightness Galaxies from Artifacts
using Deep Learning [70.80563014913676]
本研究では,低地光度銀河と人工物とを分離する問題に対する畳み込みニューラルネットワーク(CNN)の利用について検討する。
我々は、CNNが低地光度宇宙の研究に非常に有望な道を提供することを示した。
論文 参考訳(メタデータ) (2020-11-24T22:51:08Z) - Learning outside the Black-Box: The pursuit of interpretable models [78.32475359554395]
本稿では,任意の連続ブラックボックス関数の連続的大域的解釈を生成するアルゴリズムを提案する。
我々の解釈は、その芸術の以前の状態から飛躍的な進歩を表している。
論文 参考訳(メタデータ) (2020-11-17T12:39:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。