A deep-learning algorithm to disentangle self-interacting dark matter and AGN feedback models
- URL: http://arxiv.org/abs/2405.17566v1
- Date: Mon, 27 May 2024 18:00:49 GMT
- Title: A deep-learning algorithm to disentangle self-interacting dark matter and AGN feedback models
- Authors: David Harvey,
- Abstract summary: We present a Machine Learning method that ''learns'' how the impact of dark matter self-interactions differs from that of astrophysical feedback.
We train a Convolutional Neural Network on images of galaxy clusters from hydro-dynamic simulations.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Different models of dark matter can alter the distribution of mass in galaxy clusters in a variety of ways. However, so can uncertain astrophysical feedback mechanisms. Here we present a Machine Learning method that ''learns'' how the impact of dark matter self-interactions differs from that of astrophysical feedback in order to break this degeneracy and make inferences on dark matter. We train a Convolutional Neural Network on images of galaxy clusters from hydro-dynamic simulations. In the idealised case our algorithm is 80% accurate at identifying if a galaxy cluster harbours collisionless dark matter, dark matter with ${\sigma}_{\rm DM}/m = 0.1$cm$^2/$g or with ${\sigma}_{DM}/m = 1$cm$^2$/g. Whilst we find adding X-ray emissivity maps does not improve the performance in differentiating collisional dark matter, it does improve the ability to disentangle different models of astrophysical feedback. We include noise to resemble data expected from Euclid and Chandra and find our model has a statistical error of < 0.01cm$^2$/g and that our algorithm is insensitive to shape measurement bias and photometric redshift errors. This method represents a new way to analyse data from upcoming telescopes that is an order of magnitude more precise and many orders faster, enabling us to explore the dark matter parameter space like never before.
Related papers
- Cosmology from Galaxy Redshift Surveys with PointNet [65.89809800010927]
In cosmology, galaxy redshift surveys resemble such a permutation invariant collection of positions in space.
We employ a textitPointNet-like neural network to regress the values of the cosmological parameters directly from point cloud data.
Our implementation of PointNets can analyse inputs of $mathcalO(104) - mathcalO(105)$ galaxies at a time, which improves upon earlier work for this application by roughly two orders of magnitude.
arXiv Detail & Related papers (2022-11-22T15:35:05Z) - Neural Inference of Gaussian Processes for Time Series Data of Quasars [72.79083473275742]
We introduce a new model that enables it to describe quasar spectra completely.
We also introduce a new method of inference of Gaussian process parameters, which we call $textitNeural Inference$.
The combination of both the CDRW model and Neural Inference significantly outperforms the baseline DRW and MLE.
arXiv Detail & Related papers (2022-11-17T13:01:26Z) - Semi-Supervised Domain Adaptation for Cross-Survey Galaxy Morphology
Classification and Anomaly Detection [57.85347204640585]
We develop a Universal Domain Adaptation method DeepAstroUDA.
It can be applied to datasets with different types of class overlap.
For the first time, we demonstrate the successful use of domain adaptation on two very different observational datasets.
arXiv Detail & Related papers (2022-11-01T18:07:21Z) - Uncovering dark matter density profiles in dwarf galaxies with graph
neural networks [1.823419686712506]
We introduce a new method to infer the dark matter density profiles of dwarf galaxies from observable kinematics of stars gravitationally bound to these systems.
We show that this novel method can place stronger constraints on dark matter profiles and has the potential to weigh in on some of the ongoing puzzles associated with the small-scale structure of dark matter halos.
arXiv Detail & Related papers (2022-08-26T18:00:04Z) - Inferring Structural Parameters of Low-Surface-Brightness-Galaxies with
Uncertainty Quantification using Bayesian Neural Networks [70.80563014913676]
We show that a Bayesian Neural Network (BNN) can be used for the inference, with uncertainty, of such parameters from simulated low-surface-brightness galaxy images.
Compared to traditional profile-fitting methods, we show that the uncertainties obtained using BNNs are comparable in magnitude, well-calibrated, and the point estimates of the parameters are closer to the true values.
arXiv Detail & Related papers (2022-07-07T17:55:26Z) - Learning cosmology and clustering with cosmic graphs [0.0]
We train deep learning models on thousands of galaxy catalogues from the state-of-the-art hydrodynamic simulations of the CAMELS project.
We first show that GNNs can learn to compute the power spectrum of galaxy catalogues with a few percent accuracy.
We then train GNNs to perform likelihood-free inference at the galaxy-field level.
arXiv Detail & Related papers (2022-04-28T18:00:02Z) - Sensitivity Estimation for Dark Matter Subhalos in Synthetic Gaia DR2
using Deep Learning [0.0]
We describe the challenges of detecting stars whose phase-space distribution may be perturbed by the passage of dark matter subhalos using a machine learning approach.
We first quantify the magnitude of the perturbations in the simulated galaxies using an anomaly detection algorithm.
We find that a classification algorithm optimized on about half a billion synthetic star observables exhibits mild but nonzero sensitivity.
arXiv Detail & Related papers (2022-03-15T18:00:02Z) - Inferring halo masses with Graph Neural Networks [0.5804487044220691]
We build a model that infers the mass of a halo given the positions, velocities, stellar masses, and radii of the galaxies it hosts.
We use Graph Neural Networks (GNNs) that are designed to work with irregular and sparse data.
Our model is able to constrain the masses of the halos with a $sim$0.2 dex accuracy.
arXiv Detail & Related papers (2021-11-16T18:37:53Z) - AGNet: Weighing Black Holes with Deep Learning [2.4522011090845846]
Supermassive black holes (SMBHs) are ubiquitously found at the centers of most massive galaxies.
Traditional methods require spectroscopic data which is expensive to gather.
We present an algorithm that weighs SMBHs using quasar light time series.
arXiv Detail & Related papers (2021-08-17T16:45:11Z) - DeepShadows: Separating Low Surface Brightness Galaxies from Artifacts
using Deep Learning [70.80563014913676]
We investigate the use of convolutional neural networks (CNNs) for the problem of separating low-surface-brightness galaxies from artifacts in survey images.
We show that CNNs offer a very promising path in the quest to study the low-surface-brightness universe.
arXiv Detail & Related papers (2020-11-24T22:51:08Z) - Learning outside the Black-Box: The pursuit of interpretable models [78.32475359554395]
This paper proposes an algorithm that produces a continuous global interpretation of any given continuous black-box function.
Our interpretation represents a leap forward from the previous state of the art.
arXiv Detail & Related papers (2020-11-17T12:39:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.