論文の概要: InversionView: A General-Purpose Method for Reading Information from Neural Activations
- arxiv url: http://arxiv.org/abs/2405.17653v1
- Date: Mon, 27 May 2024 20:53:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-29 23:11:29.084241
- Title: InversionView: A General-Purpose Method for Reading Information from Neural Activations
- Title(参考訳): InversionView:ニューラルアクティベーションから情報を読む汎用的方法
- Authors: Xinting Huang, Madhur Panwar, Navin Goyal, Michael Hahn,
- Abstract要約: この情報は、同様のアクティベーションを引き起こす入力のサブセットによって具現化されていると我々は主張する。
InversionViewを提案し、アクティベーションに条件付きトレーニングされたデコーダモデルからサンプリングすることで、このサブセットを実際に検査することができる。
- 参考スコア(独自算出の注目度): 14.586483645544119
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The inner workings of neural networks can be better understood if we can fully decipher the information encoded in neural activations. In this paper, we argue that this information is embodied by the subset of inputs that give rise to similar activations. Computing such subsets is nontrivial as the input space is exponentially large. We propose InversionView, which allows us to practically inspect this subset by sampling from a trained decoder model conditioned on activations. This helps uncover the information content of activation vectors, and facilitates understanding of the algorithms implemented by transformer models. We present three case studies where we investigate models ranging from small transformers to GPT-2. In these studies, we demonstrate the characteristics of our method, show the distinctive advantages it offers, and provide causally verified circuits.
- Abstract(参考訳): ニューラルネットワークの内部動作は、ニューラルアクティベーションで符号化された情報を完全に解読できれば、よりよく理解できる。
本稿では、この情報が、同様のアクティベーションを引き起こす入力のサブセットによって具現化されていることを論じる。
そのような部分集合の計算は、入力空間が指数関数的に大きいため、自明ではない。
InversionViewを提案し、アクティベーションに条件付きトレーニングされたデコーダモデルからサンプリングすることで、このサブセットを実際に検査することができる。
これにより、アクティベーションベクトルの情報内容が明らかになり、トランスフォーマーモデルによって実装されたアルゴリズムの理解が容易になる。
本稿では,小型変圧器からGPT-2まで,3つのケーススタディについて検討する。
本研究では,本手法の特徴を実証し,その特長を示し,因果的に検証された回路を提供する。
関連論文リスト
- Extending Neural Network Verification to a Larger Family of Piece-wise
Linear Activation Functions [0.0]
利用可能なニューラルネットワーク検証手法を拡張して,より広い範囲の線形アクティベーション機能をサポートする。
また,開始集合として表される有界入力集合に対して,元の形式を正確にオーバー近似するアルゴリズムを拡張して,非有界入力集合も許容する。
論文 参考訳(メタデータ) (2023-11-16T11:01:39Z) - FUNCK: Information Funnels and Bottlenecks for Invariant Representation
Learning [7.804994311050265]
データから不変表現を学習すると主張する一連の関連する情報漏えいとボトルネック問題について検討する。
本稿では,この情報理論の目的である「側情報付き条件付きプライバシ・ファンネル」の新たな要素を提案する。
一般に難解な目的を考慮し、ニューラルネットワークによってパラメータ化された補正変分推論を用いて、抽出可能な近似を導出する。
論文 参考訳(メタデータ) (2022-11-02T19:37:55Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - Is Disentanglement enough? On Latent Representations for Controllable
Music Generation [78.8942067357231]
強い生成デコーダが存在しない場合、アンタングル化は必ずしも制御性を意味するものではない。
VAEデコーダに対する潜伏空間の構造は、異なる属性を操作するための生成モデルの能力を高める上で重要な役割を果たす。
論文 参考訳(メタデータ) (2021-08-01T18:37:43Z) - InteL-VAEs: Adding Inductive Biases to Variational Auto-Encoders via
Intermediary Latents [60.785317191131284]
本稿では,潜伏変数の中間集合を用いて,制御可能なバイアスでVAEを学習するための簡易かつ効果的な手法を提案する。
特に、学習した表現に対して、スパーシリティやクラスタリングといった望ましいプロパティを課すことができます。
これにより、InteL-VAEはより優れた生成モデルと表現の両方を学ぶことができる。
論文 参考訳(メタデータ) (2021-06-25T16:34:05Z) - Multitask Learning and Joint Optimization for Transformer-RNN-Transducer
Speech Recognition [13.198689566654107]
本稿では,マルチタスク学習,共同最適化,および変換器-RNN-トランスデューサシステムの共同復号法について検討する。
提案手法は, 単語誤り率(WER)を16.6 %, 13.3 %削減できることを示す。
論文 参考訳(メタデータ) (2020-11-02T06:38:06Z) - Category-Learning with Context-Augmented Autoencoder [63.05016513788047]
実世界のデータの解釈可能な非冗長表現を見つけることは、機械学習の鍵となる問題の一つである。
本稿では,オートエンコーダのトレーニングにデータ拡張を利用する新しい手法を提案する。
このような方法で変分オートエンコーダを訓練し、補助ネットワークによって変換結果を予測できるようにする。
論文 参考訳(メタデータ) (2020-10-10T14:04:44Z) - BiDet: An Efficient Binarized Object Detector [96.19708396510894]
本稿では,効率的な物体検出のためのバイナライズニューラルネットワークのBiDetを提案する。
我々のBiDetは、冗長除去による物体検出にバイナリニューラルネットワークの表現能力を完全に活用している。
我々の手法は、最先端のバイナリニューラルネットワークを大きなマージンで上回る。
論文 参考訳(メタデータ) (2020-03-09T08:16:16Z) - Forgetting Outside the Box: Scrubbing Deep Networks of Information
Accessible from Input-Output Observations [143.3053365553897]
本稿では、訓練された深層ネットワークからトレーニングデータのコホートへの依存を取り除く手順について述べる。
忘れられたコホートについて,クエリ毎にどれだけの情報を取り出すことができるか,という新たな境界を導入する。
我々は,ニューラルタンジェントカーネルにインスパイアされたDNNのアクティベーションとウェイトダイナミクスの接続を利用して,アクティベーションの情報を計算する。
論文 参考訳(メタデータ) (2020-03-05T23:17:35Z) - Semi-supervised Grasp Detection by Representation Learning in a Vector
Quantized Latent Space [1.3048920509133808]
本稿では,半教師付き学習に基づく把握検出手法を提案する。
我々の知る限りでは、変分オートエンコーダ(VAE)がロボットグリップ検出の分野に応用されたのはこれが初めてである。
このモデルでは、未ラベル画像を使用しない既存の手法に比べて、グリップを改善するために大幅に性能が向上する。
論文 参考訳(メタデータ) (2020-01-23T12:47:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。