Alignment is Key for Applying Diffusion Models to Retrosynthesis
- URL: http://arxiv.org/abs/2405.17656v1
- Date: Mon, 27 May 2024 20:57:19 GMT
- Title: Alignment is Key for Applying Diffusion Models to Retrosynthesis
- Authors: Najwa Laabid, Severi Rissanen, Markus Heinonen, Arno Solin, Vikas Garg,
- Abstract summary: Diffusion models are a promising modelling approach, enabling post-hoc conditioning and trading off quality for speed during generation.
We show mathematically that permutation equivariant denoisers severely limit the expressiveness of graph diffusion models and thus their adaptation to retrosynthesis.
Our new denoiser achieves the highest top-$1$ accuracy ($54.7$%) across template-free and template-based methods on USPTO-50k.
- Score: 24.912841472542322
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Retrosynthesis, the task of identifying precursors for a given molecule, can be naturally framed as a conditional graph generation task. Diffusion models are a particularly promising modelling approach, enabling post-hoc conditioning and trading off quality for speed during generation. We show mathematically that permutation equivariant denoisers severely limit the expressiveness of graph diffusion models and thus their adaptation to retrosynthesis. To address this limitation, we relax the equivariance requirement such that it only applies to aligned permutations of the conditioning and the generated graphs obtained through atom mapping. Our new denoiser achieves the highest top-$1$ accuracy ($54.7$\%) across template-free and template-based methods on USPTO-50k. We also demonstrate the ability for flexible post-training conditioning and good sample quality with small diffusion step counts, highlighting the potential for interactive applications and additional controls for multi-step planning.
Related papers
- Conditional Synthesis of 3D Molecules with Time Correction Sampler [58.0834973489875]
Time-Aware Conditional Synthesis (TACS) is a novel approach to conditional generation on diffusion models.
It integrates adaptively controlled plug-and-play "online" guidance into a diffusion model, driving samples toward the desired properties.
arXiv Detail & Related papers (2024-11-01T12:59:25Z) - Chemistry-Inspired Diffusion with Non-Differentiable Guidance [10.573577157257564]
Recent advances in diffusion models have shown remarkable potential in the conditional generation of novel molecules.
We propose a novel approach that leverage domain knowledge from quantum chemistry as a non-differentiable oracle to guide an unconditional diffusion model.
Instead of relying on neural networks, the oracle provides accurate guidance in the form of estimated gradients, allowing the diffusion process to sample from a conditional distribution specified by quantum chemistry.
arXiv Detail & Related papers (2024-10-09T03:10:21Z) - Tuning Timestep-Distilled Diffusion Model Using Pairwise Sample Optimization [97.35427957922714]
We present an algorithm named pairwise sample optimization (PSO), which enables the direct fine-tuning of an arbitrary timestep-distilled diffusion model.
PSO introduces additional reference images sampled from the current time-step distilled model, and increases the relative likelihood margin between the training images and reference images.
We show that PSO can directly adapt distilled models to human-preferred generation with both offline and online-generated pairwise preference image data.
arXiv Detail & Related papers (2024-10-04T07:05:16Z) - IFH: a Diffusion Framework for Flexible Design of Graph Generative Models [53.219279193440734]
Graph generative models can be classified into two prominent families: one-shot models, which generate a graph in one go, and sequential models, which generate a graph by successive additions of nodes and edges.
This paper proposes a graph generative model, called Insert-Fill-Halt (IFH), that supports the specification of a sequentiality degree.
arXiv Detail & Related papers (2024-08-23T16:24:40Z) - ShiftDDPMs: Exploring Conditional Diffusion Models by Shifting Diffusion
Trajectories [144.03939123870416]
We propose a novel conditional diffusion model by introducing conditions into the forward process.
We use extra latent space to allocate an exclusive diffusion trajectory for each condition based on some shifting rules.
We formulate our method, which we call textbfShiftDDPMs, and provide a unified point of view on existing related methods.
arXiv Detail & Related papers (2023-02-05T12:48:21Z) - Modular Flows: Differential Molecular Generation [18.41106104201439]
Flows can generate molecules effectively by inverting the encoding process.
Existing flow models require artifactual dequantization or specific node/edge orderings.
We develop continuous normalizing E(3)-equivariant flows, based on a system of node ODEs and a graph PDE.
Our models can be cast as message-passing temporal networks, and result in superlative performance on the tasks of density estimation and molecular generation.
arXiv Detail & Related papers (2022-10-12T09:08:35Z) - GeoDiff: a Geometric Diffusion Model for Molecular Conformation
Generation [102.85440102147267]
We propose a novel generative model named GeoDiff for molecular conformation prediction.
We show that GeoDiff is superior or comparable to existing state-of-the-art approaches.
arXiv Detail & Related papers (2022-03-06T09:47:01Z) - Score-based Generative Modeling of Graphs via the System of Stochastic
Differential Equations [57.15855198512551]
We propose a novel score-based generative model for graphs with a continuous-time framework.
We show that our method is able to generate molecules that lie close to the training distribution yet do not violate the chemical valency rule.
arXiv Detail & Related papers (2022-02-05T08:21:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.