Modular Flows: Differential Molecular Generation
- URL: http://arxiv.org/abs/2210.06032v2
- Date: Thu, 13 Oct 2022 08:15:32 GMT
- Title: Modular Flows: Differential Molecular Generation
- Authors: Yogesh Verma, Samuel Kaski, Markus Heinonen and Vikas Garg
- Abstract summary: Flows can generate molecules effectively by inverting the encoding process.
Existing flow models require artifactual dequantization or specific node/edge orderings.
We develop continuous normalizing E(3)-equivariant flows, based on a system of node ODEs and a graph PDE.
Our models can be cast as message-passing temporal networks, and result in superlative performance on the tasks of density estimation and molecular generation.
- Score: 18.41106104201439
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generating new molecules is fundamental to advancing critical applications
such as drug discovery and material synthesis. Flows can generate molecules
effectively by inverting the encoding process, however, existing flow models
either require artifactual dequantization or specific node/edge orderings, lack
desiderata such as permutation invariance, or induce discrepancy between the
encoding and the decoding steps that necessitates post hoc validity correction.
We circumvent these issues with novel continuous normalizing E(3)-equivariant
flows, based on a system of node ODEs coupled as a graph PDE, that repeatedly
reconcile locally toward globally aligned densities. Our models can be cast as
message-passing temporal networks, and result in superlative performance on the
tasks of density estimation and molecular generation. In particular, our
generated samples achieve state-of-the-art on both the standard QM9 and
ZINC250K benchmarks.
Related papers
- Exploring Discrete Flow Matching for 3D De Novo Molecule Generation [0.0]
Flow matching is a recently proposed generative modeling framework that has achieved impressive performance on a variety of tasks.
We present FlowMol-CTMC, an open-source model that achieves state of the art performance for 3D de novo design with fewer learnable parameters than existing methods.
arXiv Detail & Related papers (2024-11-25T18:27:39Z) - Conditional Synthesis of 3D Molecules with Time Correction Sampler [58.0834973489875]
Time-Aware Conditional Synthesis (TACS) is a novel approach to conditional generation on diffusion models.
It integrates adaptively controlled plug-and-play "online" guidance into a diffusion model, driving samples toward the desired properties.
arXiv Detail & Related papers (2024-11-01T12:59:25Z) - Leveraging Side Information for Ligand Conformation Generation using
Diffusion-Based Approaches [12.71967232020327]
Ligand molecule conformation generation is a critical challenge in drug discovery.
Deep learning models have been developed to tackle this problem.
These models often generate conformations that lack meaningful structure and randomness due to the absence of essential side information.
arXiv Detail & Related papers (2023-08-02T09:56:47Z) - Semi-Equivariant Continuous Normalizing Flows for Target-Aware Molecule
Generation [14.182657807324999]
We propose an algorithm for learning a conditional generative model of a molecule given a target.
Given a receptor molecule that one wishes to bind to, the conditional model generates candidate ligand molecules that may bind to it.
We evaluate our method on the CrossDocked 2020 dataset, attaining a significant improvement in binding affinity over competing methods.
arXiv Detail & Related papers (2022-11-09T09:16:39Z) - A Score-based Geometric Model for Molecular Dynamics Simulations [33.158796937777886]
We propose a novel model called ScoreMD to estimate the gradient of the log density of molecular conformations.
With multiple architectural improvements, we outperforms state-of-the-art baselines on MD17 and isomers of C7O2H10.
This research provides new insights into the acceleration of new material and drug discovery.
arXiv Detail & Related papers (2022-04-19T05:13:46Z) - GeoDiff: a Geometric Diffusion Model for Molecular Conformation
Generation [102.85440102147267]
We propose a novel generative model named GeoDiff for molecular conformation prediction.
We show that GeoDiff is superior or comparable to existing state-of-the-art approaches.
arXiv Detail & Related papers (2022-03-06T09:47:01Z) - Score-based Generative Modeling of Graphs via the System of Stochastic
Differential Equations [57.15855198512551]
We propose a novel score-based generative model for graphs with a continuous-time framework.
We show that our method is able to generate molecules that lie close to the training distribution yet do not violate the chemical valency rule.
arXiv Detail & Related papers (2022-02-05T08:21:04Z) - Moser Flow: Divergence-based Generative Modeling on Manifolds [49.04974733536027]
Moser Flow (MF) is a new class of generative models within the family of continuous normalizing flows (CNF)
MF does not require invoking or backpropagating through an ODE solver during training.
We demonstrate for the first time the use of flow models for sampling from general curved surfaces.
arXiv Detail & Related papers (2021-08-18T09:00:24Z) - E(n) Equivariant Normalizing Flows for Molecule Generation in 3D [87.12477361140716]
This paper introduces a generative model equivariant to Euclidean symmetries: E(n) Equivariant Normalizing Flows (E-NFs)
To the best of our knowledge, this is the first likelihood-based deep generative model that generates molecules in 3D.
arXiv Detail & Related papers (2021-05-19T09:28:54Z) - Learning Likelihoods with Conditional Normalizing Flows [54.60456010771409]
Conditional normalizing flows (CNFs) are efficient in sampling and inference.
We present a study of CNFs where the base density to output space mapping is conditioned on an input x, to model conditional densities p(y|x)
arXiv Detail & Related papers (2019-11-29T19:17:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.