Structured Partial Stochasticity in Bayesian Neural Networks
- URL: http://arxiv.org/abs/2405.17666v2
- Date: Tue, 2 Jul 2024 12:55:33 GMT
- Title: Structured Partial Stochasticity in Bayesian Neural Networks
- Authors: Tommy Rochussen,
- Abstract summary: I propose a structured way to select the deterministic subset of weights that removes neuron permutation symmetries, and therefore the corresponding redundant posterior modes.
With a drastically simplified posterior distribution, the performance of existing approximate inference schemes is found to be greatly improved.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Bayesian neural network posterior distributions have a great number of modes that correspond to the same network function. The abundance of such modes can make it difficult for approximate inference methods to do their job. Recent work has demonstrated the benefits of partial stochasticity for approximate inference in Bayesian neural networks; inference can be less costly and performance can sometimes be improved. I propose a structured way to select the deterministic subset of weights that removes neuron permutation symmetries, and therefore the corresponding redundant posterior modes. With a drastically simplified posterior distribution, the performance of existing approximate inference schemes is found to be greatly improved.
Related papers
- Implicit Variational Inference for High-Dimensional Posteriors [7.924706533725115]
In variational inference, the benefits of Bayesian models rely on accurately capturing the true posterior distribution.
We propose using neural samplers that specify implicit distributions, which are well-suited for approximating complex multimodal and correlated posteriors.
Our approach introduces novel bounds for approximate inference using implicit distributions by locally linearising the neural sampler.
arXiv Detail & Related papers (2023-10-10T14:06:56Z) - Semantic Strengthening of Neuro-Symbolic Learning [85.6195120593625]
Neuro-symbolic approaches typically resort to fuzzy approximations of a probabilistic objective.
We show how to compute this efficiently for tractable circuits.
We test our approach on three tasks: predicting a minimum-cost path in Warcraft, predicting a minimum-cost perfect matching, and solving Sudoku puzzles.
arXiv Detail & Related papers (2023-02-28T00:04:22Z) - Variational Neural Networks [88.24021148516319]
We propose a method for uncertainty estimation in neural networks called Variational Neural Network (VNN)
VNN generates parameters for the output distribution of a layer by transforming its inputs with learnable sub-layers.
In uncertainty quality estimation experiments, we show that VNNs achieve better uncertainty quality than Monte Carlo Dropout or Bayes By Backpropagation methods.
arXiv Detail & Related papers (2022-07-04T15:41:02Z) - Split personalities in Bayesian Neural Networks: the case for full
marginalisation [0.0]
We show that the true posterior distribution of a Bayesian neural network is massively multimodal.
It is only by fully marginalising over all posterior modes, using appropriate Bayesian sampling tools, that we can capture the split personalities of the network.
arXiv Detail & Related papers (2022-05-23T09:24:37Z) - An Overview of Uncertainty Quantification Methods for Infinite Neural
Networks [0.0]
We review methods for quantifying uncertainty in infinite-width neural networks.
We make use of several equivalence results along the way to obtain exact closed-form solutions for predictive uncertainty.
arXiv Detail & Related papers (2022-01-13T00:03:22Z) - Adversarial Examples Detection with Bayesian Neural Network [57.185482121807716]
We propose a new framework to detect adversarial examples motivated by the observations that random components can improve the smoothness of predictors.
We propose a novel Bayesian adversarial example detector, short for BATer, to improve the performance of adversarial example detection.
arXiv Detail & Related papers (2021-05-18T15:51:24Z) - Sampling-free Variational Inference for Neural Networks with
Multiplicative Activation Noise [51.080620762639434]
We propose a more efficient parameterization of the posterior approximation for sampling-free variational inference.
Our approach yields competitive results for standard regression problems and scales well to large-scale image classification tasks.
arXiv Detail & Related papers (2021-03-15T16:16:18Z) - Efficient Variational Inference for Sparse Deep Learning with
Theoretical Guarantee [20.294908538266867]
Sparse deep learning aims to address the challenge of huge storage consumption by deep neural networks.
In this paper, we train sparse deep neural networks with a fully Bayesian treatment under spike-and-slab priors.
We develop a set of computationally efficient variational inferences via continuous relaxation of Bernoulli distribution.
arXiv Detail & Related papers (2020-11-15T03:27:54Z) - Spatially Adaptive Inference with Stochastic Feature Sampling and
Interpolation [72.40827239394565]
We propose to compute features only at sparsely sampled locations.
We then densely reconstruct the feature map with an efficient procedure.
The presented network is experimentally shown to save substantial computation while maintaining accuracy over a variety of computer vision tasks.
arXiv Detail & Related papers (2020-03-19T15:36:31Z) - Beyond Dropout: Feature Map Distortion to Regularize Deep Neural
Networks [107.77595511218429]
In this paper, we investigate the empirical Rademacher complexity related to intermediate layers of deep neural networks.
We propose a feature distortion method (Disout) for addressing the aforementioned problem.
The superiority of the proposed feature map distortion for producing deep neural network with higher testing performance is analyzed and demonstrated.
arXiv Detail & Related papers (2020-02-23T13:59:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.