論文の概要: Fast Samplers for Inverse Problems in Iterative Refinement Models
- arxiv url: http://arxiv.org/abs/2405.17673v1
- Date: Mon, 27 May 2024 21:50:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-29 23:01:26.843005
- Title: Fast Samplers for Inverse Problems in Iterative Refinement Models
- Title(参考訳): 反復リファインメントモデルにおける逆問題に対する高速サンプリング器
- Authors: Kushagra Pandey, Ruihan Yang, Stephan Mandt,
- Abstract要約: 逆問題に対する効率的なサンプル作成のためのプラグイン・アンド・プレイフレームワークを提案する。
提案手法は,5段階の条件付きサンプリングステップで高品質なサンプルを生成でき,20~1000段の基準ラインよりも優れる。
- 参考スコア(独自算出の注目度): 19.099632445326826
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Constructing fast samplers for unconditional diffusion and flow-matching models has received much attention recently; however, existing methods for solving inverse problems, such as super-resolution, inpainting, or deblurring, still require hundreds to thousands of iterative steps to obtain high-quality results. We propose a plug-and-play framework for constructing efficient samplers for inverse problems, requiring only pre-trained diffusion or flow-matching models. We present Conditional Conjugate Integrators, which leverage the specific form of the inverse problem to project the respective conditional diffusion/flow dynamics into a more amenable space for sampling. Our method complements popular posterior approximation methods for solving inverse problems using diffusion/flow models. We evaluate the proposed method's performance on various linear image restoration tasks across multiple datasets, employing diffusion and flow-matching models. Notably, on challenging inverse problems like 4$\times$ super-resolution on the ImageNet dataset, our method can generate high-quality samples in as few as 5 conditional sampling steps and outperforms competing baselines requiring 20-1000 steps. Our code and models will be publicly available at https://github.com/mandt-lab/CI2RM.
- Abstract(参考訳): 非条件拡散およびフローマッチングモデルのための高速サンプリング器の構築は近年注目されているが、高分解能、塗装、デブロワーリングといった逆問題の解法では、高品質な結果を得るためには、数百から数千の反復的なステップがまだ必要である。
本稿では,逆問題に対する効率的なサンプル作成のためのプラグイン・アンド・プレイフレームワークを提案し,事前学習した拡散モデルやフローマッチングモデルのみを必要とする。
本稿では,逆問題の特定の形式を利用して,各条件拡散/流れのダイナミクスをサンプリング可能な空間に投影する条件共役積分器を提案する。
本手法は拡散流モデルを用いた逆問題の解法として一般的な後部近似法を補完する。
拡散モデルとフローマッチングモデルを用いて,複数のデータセットにまたがる線形画像復元作業における提案手法の性能評価を行った。
特に、ImageNetデータセット上の4$\times$超分解能のような難解な逆問題に対して、我々の手法は5つの条件付きサンプリングステップで高品質なサンプルを生成し、20~1000ステップを要する競合するベースラインより優れている。
私たちのコードとモデルはhttps://github.com/mandt-lab/CI2RM.comで公開されます。
関連論文リスト
- Diffusion Prior-Based Amortized Variational Inference for Noisy Inverse Problems [12.482127049881026]
そこで本稿では, 償却変分推論の観点から, 拡散による逆問題の解法を提案する。
我々の償却推論は、測定結果を対応するクリーンデータの暗黙の後方分布に直接マッピングする関数を学習し、未知の計測でも単一ステップの後方サンプリングを可能にする。
論文 参考訳(メタデータ) (2024-07-23T02:14:18Z) - Accelerating Parallel Sampling of Diffusion Models [25.347710690711562]
自己回帰過程を並列化することにより拡散モデルのサンプリングを高速化する新しい手法を提案する。
これらの手法を適用したParaTAAは、普遍的でトレーニング不要な並列サンプリングアルゴリズムである。
実験により、ParaTAAは一般的なシーケンシャルサンプリングアルゴリズムで要求される推論ステップを4$sim$14倍に削減できることを示した。
論文 参考訳(メタデータ) (2024-02-15T14:27:58Z) - Prompt-tuning latent diffusion models for inverse problems [72.13952857287794]
本稿では,テキストから画像への遅延拡散モデルを用いた逆問題の画像化手法を提案する。
P2Lと呼ばれる本手法は,超解像,デブロアリング,インパインティングなどの様々なタスクにおいて,画像拡散モデルと潜時拡散モデルに基づく逆問題解法の両方に優れる。
論文 参考訳(メタデータ) (2023-10-02T11:31:48Z) - Training-free Linear Image Inverses via Flows [17.291903204982326]
本研究では,事前学習フローモデルを用いて,線形逆問題に対する学習自由度を求める手法を提案する。
提案手法では,高次元データセット上でのノイズの多い線形逆問題に対して,問題固有のチューニングは不要である。
論文 参考訳(メタデータ) (2023-09-25T22:13:16Z) - A Variational Perspective on Solving Inverse Problems with Diffusion
Models [101.831766524264]
逆タスクは、データ上の後続分布を推測するものとして定式化することができる。
しかし、拡散過程の非線形的かつ反復的な性質が後部を引き付けるため、拡散モデルではこれは困難である。
そこで我々は,真の後続分布を近似する設計手法を提案する。
論文 参考訳(メタデータ) (2023-05-07T23:00:47Z) - Reflected Diffusion Models [93.26107023470979]
本稿では,データのサポートに基づいて進化する反射微分方程式を逆転する反射拡散モデルを提案する。
提案手法は,一般化されたスコアマッチング損失を用いてスコア関数を学習し,標準拡散モデルの主要成分を拡張する。
論文 参考訳(メタデータ) (2023-04-10T17:54:38Z) - Accelerating Guided Diffusion Sampling with Splitting Numerical Methods [8.689906452450938]
近年の手法は, サンプリングプロセスに高次数値法を適用することにより, 無誘導サンプリングを高速化することができる。
本稿では,この問題の原因を考察し,演算子分割法に基づく解を提供する。
提案手法は,高次サンプリング手法を再利用し,250ステップのDDIMベースラインと同じ画質の画像を生成できる。
論文 参考訳(メタデータ) (2023-01-27T06:48:29Z) - Fast Sampling of Diffusion Models via Operator Learning [74.37531458470086]
我々は,拡散モデルのサンプリング過程を高速化するために,確率フロー微分方程式の効率的な解法であるニューラル演算子を用いる。
シーケンシャルな性質を持つ他の高速サンプリング手法と比較して、並列復号法を最初に提案する。
本稿では,CIFAR-10では3.78、ImageNet-64では7.83の最先端FIDを1モデル評価環境で達成することを示す。
論文 参考訳(メタデータ) (2022-11-24T07:30:27Z) - Diffusion Posterior Sampling for General Noisy Inverse Problems [50.873313752797124]
我々は、後方サンプリングの近似により、雑音(非線形)逆問題に対処するために拡散解法を拡張した。
本手法は,拡散モデルが様々な計測ノイズ統計を組み込むことができることを示す。
論文 参考訳(メタデータ) (2022-09-29T11:12:27Z) - Improving Diffusion Models for Inverse Problems using Manifold Constraints [55.91148172752894]
我々は,現在の解法がデータ多様体からサンプルパスを逸脱し,エラーが蓄積することを示す。
この問題に対処するため、多様体の制約に着想を得た追加の補正項を提案する。
本手法は理論上も経験上も従来の方法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-06-02T09:06:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。