TIMA: Text-Image Mutual Awareness for Balancing Zero-Shot Adversarial Robustness and Generalization Ability
- URL: http://arxiv.org/abs/2405.17678v1
- Date: Mon, 27 May 2024 22:10:17 GMT
- Title: TIMA: Text-Image Mutual Awareness for Balancing Zero-Shot Adversarial Robustness and Generalization Ability
- Authors: Fengji Ma, Li Liu, Hei Victor Cheng,
- Abstract summary: This work addresses the challenge of achieving zero-shot adversarial robustness while preserving zero-shot generalization in large-scale foundation models.
We propose a novel Text-Image Mutual Awareness (TIMA) method that strikes a balance between zero-shot adversarial robustness and generalization.
- Score: 8.896239176376488
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work addresses the challenge of achieving zero-shot adversarial robustness while preserving zero-shot generalization in large-scale foundation models, with a focus on the popular Contrastive Language-Image Pre-training (CLIP). Although foundation models were reported to have exceptional zero-shot generalization, they are highly vulnerable to adversarial perturbations. Existing methods achieve a comparable good tradeoff between zero-shot adversarial robustness and generalization under small adversarial perturbations. However, they fail to achieve a good tradeoff under large adversarial perturbations. To this end, we propose a novel Text-Image Mutual Awareness (TIMA) method that strikes a balance between zero-shot adversarial robustness and generalization. More precisely, we propose an Image-Aware Text (IAT) tuning mechanism that increases the inter-class distance of text embeddings by incorporating the Minimum Hyperspherical Energy (MHE). Simultaneously, fixed pre-trained image embeddings are used as cross-modal auxiliary supervision to maintain the similarity between the MHE-tuned and original text embeddings by the knowledge distillation, preserving semantic information between different classes. Besides, we introduce a Text-Aware Image (TAI) tuning mechanism, which increases inter-class distance between image embeddings during the training stage by Text-distance based Adaptive Margin (TAM). Similarly, a knowledge distillation is utilized to retain the similarity between fine-tuned and pre-trained image embeddings. Extensive experimental results demonstrate the effectiveness of our approach, showing impressive zero-shot performance against a wide range of adversarial perturbations while preserving the zero-shot generalization capabilities of the original CLIP model.
Related papers
- Patch is Enough: Naturalistic Adversarial Patch against Vision-Language Pre-training Models [32.23201683108716]
We propose a novel strategy that exclusively employs image patches for attacks, thus preserving the integrity of the original text.
Our method leverages prior knowledge from diffusion models to enhance the authenticity and naturalness of the perturbations.
Comprehensive experiments conducted in a white-box setting for image-to-text scenarios reveal that our proposed method significantly outperforms existing techniques, achieving a 100% attack success rate.
arXiv Detail & Related papers (2024-10-07T10:06:01Z) - Rethinking and Defending Protective Perturbation in Personalized Diffusion Models [21.30373461975769]
We study the fine-tuning process of personalized diffusion models (PDMs) through the lens of shortcut learning.
PDMs are susceptible to minor adversarial perturbations, leading to significant degradation when fine-tuned on corrupted datasets.
We propose a systematic defense framework that includes data purification and contrastive decoupling learning.
arXiv Detail & Related papers (2024-06-27T07:14:14Z) - Saliency Attention and Semantic Similarity-Driven Adversarial Perturbation [0.0]
Saliency Attention and Semantic Similarity driven adversarial Perturbation (SASSP) is designed to improve the effectiveness of contextual perturbations.
Our proposed approach incorporates a three-pronged strategy for word selection and perturbation.
SASSP has yielded a higher attack success rate and lower word perturbation rate.
arXiv Detail & Related papers (2024-06-18T14:07:27Z) - Few-Shot Adversarial Prompt Learning on Vision-Language Models [62.50622628004134]
The vulnerability of deep neural networks to imperceptible adversarial perturbations has attracted widespread attention.
Previous efforts achieved zero-shot adversarial robustness by aligning adversarial visual features with text supervision.
We propose a few-shot adversarial prompt framework where adapting input sequences with limited data makes significant adversarial robustness improvement.
arXiv Detail & Related papers (2024-03-21T18:28:43Z) - Towards Robust Image Stitching: An Adaptive Resistance Learning against
Compatible Attacks [66.98297584796391]
Image stitching seamlessly integrates images captured from varying perspectives into a single wide field-of-view image.
Given a pair of captured images, subtle perturbations and distortions which go unnoticed by the human visual system tend to attack the correspondence matching.
This paper presents the first attempt to improve the robustness of image stitching against adversarial attacks.
arXiv Detail & Related papers (2024-02-25T02:36:33Z) - Improving Adversarial Robustness of Masked Autoencoders via Test-time
Frequency-domain Prompting [133.55037976429088]
We investigate the adversarial robustness of vision transformers equipped with BERT pretraining (e.g., BEiT, MAE)
A surprising observation is that MAE has significantly worse adversarial robustness than other BERT pretraining methods.
We propose a simple yet effective way to boost the adversarial robustness of MAE.
arXiv Detail & Related papers (2023-08-20T16:27:17Z) - PAIF: Perception-Aware Infrared-Visible Image Fusion for Attack-Tolerant
Semantic Segmentation [50.556961575275345]
We propose a perception-aware fusion framework to promote segmentation robustness in adversarial scenes.
We show that our scheme substantially enhances the robustness, with gains of 15.3% mIOU, compared with advanced competitors.
arXiv Detail & Related papers (2023-08-08T01:55:44Z) - Understanding Zero-Shot Adversarial Robustness for Large-Scale Models [31.295249927085475]
We identify and explore the problem of emphadapting large-scale models for zero-shot adversarial robustness.
We propose a text-guided contrastive adversarial training loss, which aligns the text embeddings and the adversarial visual features with contrastive learning.
Our approach significantly improves the zero-shot adversarial robustness over CLIP, seeing an average improvement of over 31 points over ImageNet and 15 zero-shot datasets.
arXiv Detail & Related papers (2022-12-14T04:08:56Z) - Robust Single Image Dehazing Based on Consistent and Contrast-Assisted
Reconstruction [95.5735805072852]
We propose a novel density-variational learning framework to improve the robustness of the image dehzing model.
Specifically, the dehazing network is optimized under the consistency-regularized framework.
Our method significantly surpasses the state-of-the-art approaches.
arXiv Detail & Related papers (2022-03-29T08:11:04Z) - Adaptive Clustering of Robust Semantic Representations for Adversarial
Image Purification [0.9203366434753543]
We propose a robust defense against adversarial attacks, which is model agnostic and generalizable to unseen adversaries.
In this paper, we extract the latent representations for each class and adaptively cluster the latent representations that share a semantic similarity.
We adversarially train a new model constraining the latent space representation to minimize the distance between the adversarial latent representation and the true cluster distribution.
arXiv Detail & Related papers (2021-04-05T21:07:04Z) - Stylized Adversarial Defense [105.88250594033053]
adversarial training creates perturbation patterns and includes them in the training set to robustify the model.
We propose to exploit additional information from the feature space to craft stronger adversaries.
Our adversarial training approach demonstrates strong robustness compared to state-of-the-art defenses.
arXiv Detail & Related papers (2020-07-29T08:38:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.