Data-Efficient Generalization for Zero-shot Composed Image Retrieval
- URL: http://arxiv.org/abs/2503.05204v1
- Date: Fri, 07 Mar 2025 07:49:31 GMT
- Title: Data-Efficient Generalization for Zero-shot Composed Image Retrieval
- Authors: Zining Chen, Zhicheng Zhao, Fei Su, Xiaoqin Zhang, Shijian Lu,
- Abstract summary: ZS-CIR aims to retrieve the target image based on a reference image and a text description without requiring in-distribution triplets for training.<n>One prevalent approach follows the vision-language pretraining paradigm that employs a mapping network to transfer the image embedding to a pseudo-word token in the text embedding space.<n>We propose a Data-efficient Generalization (DeG) framework, including two novel designs, namely, Textual Supplement (TS) module and Semantic-Set (S-Set)
- Score: 67.46975191141928
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Zero-shot Composed Image Retrieval (ZS-CIR) aims to retrieve the target image based on a reference image and a text description without requiring in-distribution triplets for training. One prevalent approach follows the vision-language pretraining paradigm that employs a mapping network to transfer the image embedding to a pseudo-word token in the text embedding space. However, this approach tends to impede network generalization due to modality discrepancy and distribution shift between training and inference. To this end, we propose a Data-efficient Generalization (DeG) framework, including two novel designs, namely, Textual Supplement (TS) module and Semantic-Set (S-Set). The TS module exploits compositional textual semantics during training, enhancing the pseudo-word token with more linguistic semantics and thus mitigating the modality discrepancy effectively. The S-Set exploits the zero-shot capability of pretrained Vision-Language Models (VLMs), alleviating the distribution shift and mitigating the overfitting issue from the redundancy of the large-scale image-text data. Extensive experiments over four ZS-CIR benchmarks show that DeG outperforms the state-of-the-art (SOTA) methods with much less training data, and saves substantial training and inference time for practical usage.
Related papers
- Fine-grained Textual Inversion Network for Zero-Shot Composed Image Retrieval [60.20835288280572]
We propose a novel Fine-grained Textual Inversion Network for ZS-CIR, named FTI4CIR.
FTI4CIR comprises two main components: fine-grained pseudo-word token mapping and tri-wise caption-based semantic regularization.
arXiv Detail & Related papers (2025-03-25T02:51:25Z) - SCOT: Self-Supervised Contrastive Pretraining For Zero-Shot Compositional Retrieval [7.248145893361865]
Compositional image retrieval (CIR) is a multimodal learning task where a model combines a query image with a user-provided text modification to retrieve a target image.
Existing methods primarily focus on fully-supervised learning, wherein models are trained on datasets of labeled triplets such as FashionIQ and CIRR.
In this work, we propose SCOT, a novel zero-shot compositional pretraining strategy that combines existing large image-text pair datasets with the generative capabilities of large language models to contrastively train an embedding composition network.
arXiv Detail & Related papers (2025-01-12T07:23:49Z) - MoTaDual: Modality-Task Dual Alignment for Enhanced Zero-shot Composed Image Retrieval [20.612534837883892]
Composed Image Retrieval (CIR) is a challenging vision-language task, utilizing bi-modal (image+text) queries to retrieve target images.
In this paper, we propose a two-stage framework to tackle both discrepancies.
MoTaDual achieves the state-of-the-art performance across four widely used ZS-CIR benchmarks, while maintaining low training time and computational cost.
arXiv Detail & Related papers (2024-10-31T08:49:05Z) - Debiasing Vison-Language Models with Text-Only Training [15.069736314663352]
We propose a Text-Only Debiasing framework called TOD, leveraging a text-as-image training paradigm to mitigate visual biases.
To address the limitations, we propose a Text-Only Debiasing framework called TOD, leveraging a text-as-image training paradigm to mitigate visual biases.
arXiv Detail & Related papers (2024-10-12T04:34:46Z) - Cross-Modal Attention Alignment Network with Auxiliary Text Description for zero-shot sketch-based image retrieval [10.202562518113677]
We propose an approach called Cross-Modal Attention Alignment Network with Auxiliary Text Description for zero-shot sketch-based image retrieval.
Our key innovation lies in the usage of text data as auxiliary information for images, thus leveraging the inherent zero-shot generalization ability that language offers.
arXiv Detail & Related papers (2024-07-01T05:32:06Z) - Image2Sentence based Asymmetrical Zero-shot Composed Image Retrieval [92.13664084464514]
The task of composed image retrieval (CIR) aims to retrieve images based on the query image and the text describing the users' intent.
Existing methods have made great progress with the advanced large vision-language (VL) model in CIR task, however, they generally suffer from two main issues: lack of labeled triplets for model training and difficulty of deployment on resource-restricted environments.
We propose Image2Sentence based Asymmetric zero-shot composed image retrieval (ISA), which takes advantage of the VL model and only relies on unlabeled images for composition learning.
arXiv Detail & Related papers (2024-03-03T07:58:03Z) - Training-free Zero-shot Composed Image Retrieval with Local Concept Reranking [34.31345844296072]
Composed image retrieval attempts to retrieve an image of interest from gallery images through a composed query of a reference image and its corresponding modified text.
Most current composed image retrieval methods follow a supervised learning approach to training on a costly triplet dataset composed of a reference image, modified text, and a corresponding target image.
We present a new training-free zero-shot composed image retrieval method which translates the query into explicit human-understandable text.
arXiv Detail & Related papers (2023-12-14T13:31:01Z) - Vision-by-Language for Training-Free Compositional Image Retrieval [78.60509831598745]
Compositional Image Retrieval (CIR) aims to retrieve the relevant target image in a database.
Recent research sidesteps this need by using large-scale vision-language models (VLMs)
We propose to tackle CIR in a training-free manner via Vision-by-Language (CIReVL)
arXiv Detail & Related papers (2023-10-13T17:59:38Z) - BOSS: Bottom-up Cross-modal Semantic Composition with Hybrid
Counterfactual Training for Robust Content-based Image Retrieval [61.803481264081036]
Content-Based Image Retrieval (CIR) aims to search for a target image by concurrently comprehending the composition of an example image and a complementary text.
We tackle this task by a novel underlinetextbfBottom-up crunderlinetextbfOss-modal underlinetextbfSemantic compounderlinetextbfSition (textbfBOSS) with Hybrid Counterfactual Training framework.
arXiv Detail & Related papers (2022-07-09T07:14:44Z) - Enhanced Modality Transition for Image Captioning [51.72997126838352]
We build a Modality Transition Module (MTM) to transfer visual features into semantic representations before forwarding them to the language model.
During the training phase, the modality transition network is optimised by the proposed modality loss.
Experiments have been conducted on the MS-COCO dataset demonstrating the effectiveness of the proposed framework.
arXiv Detail & Related papers (2021-02-23T07:20:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.