MobileConvRec: A Conversational Dataset for Mobile Apps Recommendations
- URL: http://arxiv.org/abs/2405.17740v1
- Date: Tue, 28 May 2024 01:53:16 GMT
- Title: MobileConvRec: A Conversational Dataset for Mobile Apps Recommendations
- Authors: Srijata Maji, Moghis Fereidouni, Vinaik Chhetri, Umar Farooq, A. B. Siddique,
- Abstract summary: We present MobileConvRec, a benchmark dataset for conversational mobile app recommendations.
MobileConvRec consists of over 12K multi-turn recommendation-related conversations spanning 45 app categories.
We demonstrate that MobileConvRec can serve as an excellent testbed for conversational mobile app recommendation.
- Score: 2.1926846784098064
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Existing recommendation systems have focused on two paradigms: 1- historical user-item interaction-based recommendations and 2- conversational recommendations. Conversational recommendation systems facilitate natural language dialogues between users and the system, allowing the system to solicit users' explicit needs while enabling users to inquire about recommendations and provide feedback. Due to substantial advancements in natural language processing, conversational recommendation systems have gained prominence. Existing conversational recommendation datasets have greatly facilitated research in their respective domains. Despite the exponential growth in mobile users and apps in recent years, research in conversational mobile app recommender systems has faced substantial constraints. This limitation can primarily be attributed to the lack of high-quality benchmark datasets specifically tailored for mobile apps. To facilitate research for conversational mobile app recommendations, we introduce MobileConvRec. MobileConvRec simulates conversations by leveraging real user interactions with mobile apps on the Google Play store, originally captured in large-scale mobile app recommendation dataset MobileRec. The proposed conversational recommendation dataset synergizes sequential user-item interactions, which reflect implicit user preferences, with comprehensive multi-turn conversations to effectively grasp explicit user needs. MobileConvRec consists of over 12K multi-turn recommendation-related conversations spanning 45 app categories. Moreover, MobileConvRec presents rich metadata for each app such as permissions data, security and privacy-related information, and binary executables of apps, among others. We demonstrate that MobileConvRec can serve as an excellent testbed for conversational mobile app recommendation through a comparative study of several pre-trained large language models.
Related papers
- Large Language Models as Zero-Shot Conversational Recommenders [52.57230221644014]
We present empirical studies on conversational recommendation tasks using representative large language models in a zero-shot setting.
We construct a new dataset of recommendation-related conversations by scraping a popular discussion website.
We observe that even without fine-tuning, large language models can outperform existing fine-tuned conversational recommendation models.
arXiv Detail & Related papers (2023-08-19T15:29:45Z) - Large Language Model Augmented Narrative Driven Recommendations [51.77271767160573]
Narrative-driven recommendation (NDR) presents an information access problem where users solicit recommendations with verbose descriptions of their preferences and context.
NDR lacks abundant training data for models, and current platforms commonly do not support these requests.
We use large language models (LLMs) for data augmentation to train NDR models.
arXiv Detail & Related papers (2023-06-04T03:46:45Z) - MobileRec: A Large-Scale Dataset for Mobile Apps Recommendation [13.500977307018669]
MobileRec contains 19.3 million user interactions (i.e., user reviews on apps) with over 10K unique apps across 48 categories.
MobileRec presents users' ratings as well as sentiments on installed apps, and each app contains rich metadata such as app name, category, description, and overall rating.
arXiv Detail & Related papers (2023-03-12T06:39:40Z) - Talk the Walk: Synthetic Data Generation for Conversational Music
Recommendation [62.019437228000776]
We present TalkWalk, which generates realistic high-quality conversational data by leveraging encoded expertise in widely available item collections.
We generate over one million diverse conversations in a human-collected dataset.
arXiv Detail & Related papers (2023-01-27T01:54:16Z) - COLA: Improving Conversational Recommender Systems by Collaborative
Augmentation [9.99763097964222]
We propose a collaborative augmentation (COLA) method to improve both item representation learning and user preference modeling.
We construct an interactive user-item graph from all conversations, which augments item representations with user-aware information.
To improve user preference modeling, we retrieve similar conversations from the training corpus, where the involved items and attributes that reflect the user's potential interests are used to augment the user representation.
arXiv Detail & Related papers (2022-12-15T12:37:28Z) - Self-Supervised Bot Play for Conversational Recommendation with
Justifications [3.015622397986615]
We develop a new two-part framework for training conversational recommender systems.
First, we train a recommender system to jointly suggest items and justify its reasoning with subjective aspects.
We then fine-tune this model to incorporate iterative user feedback via self-supervised bot-play.
arXiv Detail & Related papers (2021-12-09T20:07:41Z) - COOKIE: A Dataset for Conversational Recommendation over Knowledge
Graphs in E-commerce [64.95907840457471]
We present a new dataset for conversational recommendation over knowledge graphs in e-commerce platforms called COOKIE.
The dataset is constructed from an Amazon review corpus by integrating both user-agent dialogue and custom knowledge graphs for recommendation.
arXiv Detail & Related papers (2020-08-21T00:11:31Z) - Improving Conversational Recommender Systems via Knowledge Graph based
Semantic Fusion [77.21442487537139]
Conversational recommender systems (CRS) aim to recommend high-quality items to users through interactive conversations.
First, the conversation data itself lacks of sufficient contextual information for accurately understanding users' preference.
Second, there is a semantic gap between natural language expression and item-level user preference.
arXiv Detail & Related papers (2020-07-08T11:14:23Z) - Towards Conversational Recommendation over Multi-Type Dialogs [78.52354759386296]
We propose a new task of conversational recommendation over multi-type dialogs, where the bots can proactively and naturally lead a conversation from a non-recommendation dialog to a recommendation dialog.
To facilitate the study of this task, we create a human-to-human Chinese dialog dataset emphDuRecDial (about 10k dialogs, 156k utterances)
In each dialog, the recommender proactively leads a multi-type dialog to approach recommendation targets and then makes multiple recommendations with rich interaction behavior.
arXiv Detail & Related papers (2020-05-08T11:01:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.