Post-Fair Federated Learning: Achieving Group and Community Fairness in Federated Learning via Post-processing
- URL: http://arxiv.org/abs/2405.17782v1
- Date: Tue, 28 May 2024 03:26:00 GMT
- Title: Post-Fair Federated Learning: Achieving Group and Community Fairness in Federated Learning via Post-processing
- Authors: Yuying Duan, Yijun Tian, Nitesh Chawla, Michael Lemmon,
- Abstract summary: Two notions of fairness have emerged as important issues for federated learning: group fairness and community fairness.
This paper proposes and analyzes a post-processing fair federated learning framework called post-FFL.
- Score: 2.361519691494246
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated Learning (FL) is a distributed machine learning framework in which a set of local communities collaboratively learn a shared global model while retaining all training data locally within each community. Two notions of fairness have recently emerged as important issues for federated learning: group fairness and community fairness. Group fairness requires that a model's decisions do not favor any particular group based on a set of legally protected attributes such as race or gender. Community fairness requires that global models exhibit similar levels of performance (accuracy) across all collaborating communities. Both fairness concepts can coexist within an FL framework, but the existing literature has focused on either one concept or the other. This paper proposes and analyzes a post-processing fair federated learning (FFL) framework called post-FFL. Post-FFL uses a linear program to simultaneously enforce group and community fairness while maximizing the utility of the global model. Because Post-FFL is a post-processing approach, it can be used with existing FL training pipelines whose convergence properties are well understood. This paper uses post-FFL on real-world datasets to mimic how hospital networks, for example, use federated learning to deliver community health care. Theoretical results bound the accuracy lost when post-FFL enforces both notion of fairness. Experimental results illustrate that post-FFL simultaneously improves both group and community fairness in FL. Moreover, post-FFL outperforms the existing in-processing fair federated learning in terms of improving both notions of fairness, communication efficiency and computation cost.
Related papers
- Dynamic Fair Federated Learning Based on Reinforcement Learning [19.033986978896074]
Federated learning enables a collaborative training and optimization of global models among a group of devices without sharing local data samples.
We propose a dynamic q fairness federated learning algorithm with reinforcement learning, called DQFFL.
Our DQFFL outperforms the state-of-the-art methods in terms of overall performance, fairness and convergence speed.
arXiv Detail & Related papers (2023-11-02T03:05:40Z) - How Robust is Your Fairness? Evaluating and Sustaining Fairness under
Unseen Distribution Shifts [107.72786199113183]
We propose a novel fairness learning method termed CUrvature MAtching (CUMA)
CUMA achieves robust fairness generalizable to unseen domains with unknown distributional shifts.
We evaluate our method on three popular fairness datasets.
arXiv Detail & Related papers (2022-07-04T02:37:50Z) - FairVFL: A Fair Vertical Federated Learning Framework with Contrastive
Adversarial Learning [102.92349569788028]
We propose a fair vertical federated learning framework (FairVFL) to improve the fairness of VFL models.
The core idea of FairVFL is to learn unified and fair representations of samples based on the decentralized feature fields in a privacy-preserving way.
For protecting user privacy, we propose a contrastive adversarial learning method to remove private information from the unified representation in server.
arXiv Detail & Related papers (2022-06-07T11:43:32Z) - E2FL: Equal and Equitable Federated Learning [26.5268278194427]
Federated Learning (FL) enables data owners to train a shared global model without sharing their private data.
We present Equal and Equitable Federated Learning (E2FL) to produce fair federated learning models by preserving two main fairness properties, equity and equality, concurrently.
We validate the efficiency and fairness of E2FL in different real-world FL applications, and show that E2FL outperforms existing baselines in terms of the resulting efficiency, fairness of different groups, and fairness among all individual clients.
arXiv Detail & Related papers (2022-05-20T22:37:33Z) - Heterogeneous Federated Learning via Grouped Sequential-to-Parallel
Training [60.892342868936865]
Federated learning (FL) is a rapidly growing privacy-preserving collaborative machine learning paradigm.
We propose a data heterogeneous-robust FL approach, FedGSP, to address this challenge.
We show that FedGSP improves the accuracy by 3.7% on average compared with seven state-of-the-art approaches.
arXiv Detail & Related papers (2022-01-31T03:15:28Z) - Unified Group Fairness on Federated Learning [22.143427873780404]
Federated learning (FL) has emerged as an important machine learning paradigm where a global model is trained based on private data from distributed clients.
Recent researches focus on achieving fairness among clients, but they ignore the fairness towards different groups formed by sensitive attribute(s) (e.g., gender and/or race)
We propose a novel FL algorithm, named Group Distributionally Robust Federated Averaging (G-DRFA), which mitigates the distribution shift across groups with theoretical analysis of convergence rate.
arXiv Detail & Related papers (2021-11-09T08:21:38Z) - FairFed: Enabling Group Fairness in Federated Learning [22.913999279079878]
Federated learning has been viewed as a promising solution for learning machine learning models among multiple parties.
We propose FairFed, a novel algorithm to enhance group fairness via a fairness-aware aggregation method.
Our proposed method outperforms the state-of-the-art fair federated learning frameworks under a high heterogeneous sensitive attribute distribution.
arXiv Detail & Related papers (2021-10-02T17:55:20Z) - MultiFair: Multi-Group Fairness in Machine Learning [52.24956510371455]
We study multi-group fairness in machine learning (MultiFair)
We propose a generic end-to-end algorithmic framework to solve it.
Our proposed framework is generalizable to many different settings.
arXiv Detail & Related papers (2021-05-24T02:30:22Z) - FedH2L: Federated Learning with Model and Statistical Heterogeneity [75.61234545520611]
Federated learning (FL) enables distributed participants to collectively learn a strong global model without sacrificing their individual data privacy.
We introduce FedH2L, which is agnostic to both the model architecture and robust to different data distributions across participants.
In contrast to approaches sharing parameters or gradients, FedH2L relies on mutual distillation, exchanging only posteriors on a shared seed set between participants in a decentralized manner.
arXiv Detail & Related papers (2021-01-27T10:10:18Z) - Collaborative Fairness in Federated Learning [24.7378023761443]
We propose a novel Collaborative Fair Federated Learning (CFFL) framework for deep learning.
CFFL enforces participants to converge to different models, thus achieving fairness without compromising predictive performance.
Experiments on benchmark datasets demonstrate that CFFL achieves high fairness and delivers comparable accuracy to the Distributed framework.
arXiv Detail & Related papers (2020-08-27T14:39:09Z) - WAFFLe: Weight Anonymized Factorization for Federated Learning [88.44939168851721]
In domains where data are sensitive or private, there is great value in methods that can learn in a distributed manner without the data ever leaving the local devices.
We propose Weight Anonymized Factorization for Federated Learning (WAFFLe), an approach that combines the Indian Buffet Process with a shared dictionary of weight factors for neural networks.
arXiv Detail & Related papers (2020-08-13T04:26:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.