Dynamic Fair Federated Learning Based on Reinforcement Learning
- URL: http://arxiv.org/abs/2311.00959v1
- Date: Thu, 2 Nov 2023 03:05:40 GMT
- Title: Dynamic Fair Federated Learning Based on Reinforcement Learning
- Authors: Weikang Chen, Junping Du, Yingxia Shao, Jia Wang, and Yangxi Zhou
- Abstract summary: Federated learning enables a collaborative training and optimization of global models among a group of devices without sharing local data samples.
We propose a dynamic q fairness federated learning algorithm with reinforcement learning, called DQFFL.
Our DQFFL outperforms the state-of-the-art methods in terms of overall performance, fairness and convergence speed.
- Score: 19.033986978896074
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning enables a collaborative training and optimization of
global models among a group of devices without sharing local data samples.
However, the heterogeneity of data in federated learning can lead to unfair
representation of the global model across different devices. To address the
fairness issue in federated learning, we propose a dynamic q fairness federated
learning algorithm with reinforcement learning, called DQFFL. DQFFL aims to
mitigate the discrepancies in device aggregation and enhance the fairness of
treatment for all groups involved in federated learning. To quantify fairness,
DQFFL leverages the performance of the global federated model on each device
and incorporates {\alpha}-fairness to transform the preservation of fairness
during federated aggregation into the distribution of client weights in the
aggregation process. Considering the sensitivity of parameters in measuring
fairness, we propose to utilize reinforcement learning for dynamic parameters
during aggregation. Experimental results demonstrate that our DQFFL outperforms
the state-of-the-art methods in terms of overall performance, fairness and
convergence speed.
Related papers
- Redefining Contributions: Shapley-Driven Federated Learning [3.9539878659683363]
Federated learning (FL) has emerged as a pivotal approach in machine learning.
It is challenging to ensure global model convergence when participants do not contribute equally and/or honestly.
This paper proposes a novel contribution assessment method called ShapFed for fine-grained evaluation of participant contributions in FL.
arXiv Detail & Related papers (2024-06-01T22:40:31Z) - An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
Federated Learning (FL) relies on the effectiveness of utilizing knowledge from distributed datasets.
Traditional FL methods adopt an aggregate-then-adapt framework, where clients update local models based on a global model aggregated by the server from the previous training round.
We introduce FedAF, a novel aggregation-free FL algorithm.
arXiv Detail & Related papers (2024-04-29T05:55:23Z) - An Element-Wise Weights Aggregation Method for Federated Learning [11.9232569348563]
This paper introduces an innovative Element-Wise Weights Aggregation Method for Federated Learning (EWWA-FL)
EWWA-FL aggregates local weights to the global model at the level of individual elements, allowing each participating client to make element-wise contributions to the learning process.
By taking into account the unique dataset characteristics of each client, EWWA-FL enhances the robustness of the global model to different datasets.
arXiv Detail & Related papers (2024-04-24T15:16:06Z) - Stragglers-Aware Low-Latency Synchronous Federated Learning via Layer-Wise Model Updates [71.81037644563217]
Synchronous federated learning (FL) is a popular paradigm for collaborative edge learning.
As some of the devices may have limited computational resources and varying availability, FL latency is highly sensitive to stragglers.
We propose straggler-aware layer-wise federated learning (SALF) that leverages the optimization procedure of NNs via backpropagation to update the global model in a layer-wise fashion.
arXiv Detail & Related papers (2024-03-27T09:14:36Z) - Integrating Local Real Data with Global Gradient Prototypes for
Classifier Re-Balancing in Federated Long-Tailed Learning [60.41501515192088]
Federated Learning (FL) has become a popular distributed learning paradigm that involves multiple clients training a global model collaboratively.
The data samples usually follow a long-tailed distribution in the real world, and FL on the decentralized and long-tailed data yields a poorly-behaved global model.
In this work, we integrate the local real data with the global gradient prototypes to form the local balanced datasets.
arXiv Detail & Related papers (2023-01-25T03:18:10Z) - FAIR-FATE: Fair Federated Learning with Momentum [0.41998444721319217]
We propose a novel FAIR FederATEd Learning algorithm that aims to achieve group fairness while maintaining high utility.
To the best of our knowledge, this is the first approach in machine learning that aims to achieve fairness using a fair Momentum estimate.
Experimental results on real-world datasets demonstrate that FAIR-FATE outperforms state-of-the-art fair Federated Learning algorithms.
arXiv Detail & Related papers (2022-09-27T20:33:38Z) - FedDM: Iterative Distribution Matching for Communication-Efficient
Federated Learning [87.08902493524556]
Federated learning(FL) has recently attracted increasing attention from academia and industry.
We propose FedDM to build the global training objective from multiple local surrogate functions.
In detail, we construct synthetic sets of data on each client to locally match the loss landscape from original data.
arXiv Detail & Related papers (2022-07-20T04:55:18Z) - A Fair Federated Learning Framework With Reinforcement Learning [23.675056844328]
Federated learning (FL) is a paradigm where many clients collaboratively train a model under the coordination of a central server.
We propose a reinforcement learning framework, called PG-FFL, which automatically learns a policy to assign aggregation weights to clients.
We conduct extensive experiments over diverse datasets to verify the effectiveness of our framework.
arXiv Detail & Related papers (2022-05-26T15:10:16Z) - Heterogeneous Federated Learning via Grouped Sequential-to-Parallel
Training [60.892342868936865]
Federated learning (FL) is a rapidly growing privacy-preserving collaborative machine learning paradigm.
We propose a data heterogeneous-robust FL approach, FedGSP, to address this challenge.
We show that FedGSP improves the accuracy by 3.7% on average compared with seven state-of-the-art approaches.
arXiv Detail & Related papers (2022-01-31T03:15:28Z) - Unified Group Fairness on Federated Learning [22.143427873780404]
Federated learning (FL) has emerged as an important machine learning paradigm where a global model is trained based on private data from distributed clients.
Recent researches focus on achieving fairness among clients, but they ignore the fairness towards different groups formed by sensitive attribute(s) (e.g., gender and/or race)
We propose a novel FL algorithm, named Group Distributionally Robust Federated Averaging (G-DRFA), which mitigates the distribution shift across groups with theoretical analysis of convergence rate.
arXiv Detail & Related papers (2021-11-09T08:21:38Z) - Towards Fair Federated Learning with Zero-Shot Data Augmentation [123.37082242750866]
Federated learning has emerged as an important distributed learning paradigm, where a server aggregates a global model from many client-trained models while having no access to the client data.
We propose a novel federated learning system that employs zero-shot data augmentation on under-represented data to mitigate statistical heterogeneity and encourage more uniform accuracy performance across clients in federated networks.
We study two variants of this scheme, Fed-ZDAC (federated learning with zero-shot data augmentation at the clients) and Fed-ZDAS (federated learning with zero-shot data augmentation at the server).
arXiv Detail & Related papers (2021-04-27T18:23:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.