Learn to be Fair without Labels: a Distribution-based Learning Framework for Fair Ranking
- URL: http://arxiv.org/abs/2405.17798v1
- Date: Tue, 28 May 2024 03:49:04 GMT
- Title: Learn to be Fair without Labels: a Distribution-based Learning Framework for Fair Ranking
- Authors: Fumian Chen, Hui Fang,
- Abstract summary: We propose a distribution-based fair learning framework (DLF) that does not require labels by replacing the unavailable fairness labels with target fairness exposure distributions.
Our proposed framework achieves better fairness performance while maintaining better control over the fairness-relevance trade-off.
- Score: 1.8577028544235155
- License:
- Abstract: Ranking algorithms as an essential component of retrieval systems have been constantly improved in previous studies, especially regarding relevance-based utilities. In recent years, more and more research attempts have been proposed regarding fairness in rankings due to increasing concerns about potential discrimination and the issue of echo chamber. These attempts include traditional score-based methods that allocate exposure resources to different groups using pre-defined scoring functions or selection strategies and learning-based methods that learn the scoring functions based on data samples. Learning-based models are more flexible and achieve better performance than traditional methods. However, most of the learning-based models were trained and tested on outdated datasets where fairness labels are barely available. State-of-art models utilize relevance-based utility scores as a substitute for the fairness labels to train their fairness-aware loss, where plugging in the substitution does not guarantee the minimum loss. This inconsistency challenges the model's accuracy and performance, especially when learning is achieved by gradient descent. Hence, we propose a distribution-based fair learning framework (DLF) that does not require labels by replacing the unavailable fairness labels with target fairness exposure distributions. Experimental studies on TREC fair ranking track dataset confirm that our proposed framework achieves better fairness performance while maintaining better control over the fairness-relevance trade-off than state-of-art fair ranking frameworks.
Related papers
- Fair Bilevel Neural Network (FairBiNN): On Balancing fairness and accuracy via Stackelberg Equilibrium [0.3350491650545292]
Current methods for mitigating bias often result in information loss and an inadequate balance between accuracy and fairness.
We propose a novel methodology grounded in bilevel optimization principles.
Our deep learning-based approach concurrently optimize for both accuracy and fairness objectives.
arXiv Detail & Related papers (2024-10-21T18:53:39Z) - Learning Fair Ranking Policies via Differentiable Optimization of
Ordered Weighted Averages [55.04219793298687]
This paper shows how efficiently-solvable fair ranking models can be integrated into the training loop of Learning to Rank.
In particular, this paper is the first to show how to backpropagate through constrained optimizations of OWA objectives, enabling their use in integrated prediction and decision models.
arXiv Detail & Related papers (2024-02-07T20:53:53Z) - Exploring Vacant Classes in Label-Skewed Federated Learning [113.65301899666645]
Label skews, characterized by disparities in local label distribution across clients, pose a significant challenge in federated learning.
This paper introduces FedVLS, a novel approach to label-skewed federated learning that integrates vacant-class distillation and logit suppression simultaneously.
arXiv Detail & Related papers (2024-01-04T16:06:31Z) - Fair Active Learning in Low-Data Regimes [22.349886628823125]
In machine learning applications, ensuring fairness is essential to avoid perpetuating social inequities.
In this work, we address the challenges of reducing bias and improving accuracy in data-scarce environments.
We introduce an innovative active learning framework that combines an exploration procedure inspired by posterior sampling with a fair classification subroutine.
We demonstrate that this framework performs effectively in very data-scarce regimes, maximizing accuracy while satisfying fairness constraints with high probability.
arXiv Detail & Related papers (2023-12-13T23:14:55Z) - Fair Few-shot Learning with Auxiliary Sets [53.30014767684218]
In many machine learning (ML) tasks, only very few labeled data samples can be collected, which can lead to inferior fairness performance.
In this paper, we define the fairness-aware learning task with limited training samples as the emphfair few-shot learning problem.
We devise a novel framework that accumulates fairness-aware knowledge across different meta-training tasks and then generalizes the learned knowledge to meta-test tasks.
arXiv Detail & Related papers (2023-08-28T06:31:37Z) - FairAdaBN: Mitigating unfairness with adaptive batch normalization and
its application to dermatological disease classification [14.589159162086926]
We propose FairAdaBN, which makes batch normalization adaptive to sensitive attribute.
We propose a new metric, named Fairness-Accuracy Trade-off Efficiency (FATE), to compute normalized fairness improvement over accuracy drop.
Experiments on two dermatological datasets show that our proposed method outperforms other methods on fairness criteria and FATE.
arXiv Detail & Related papers (2023-03-15T02:22:07Z) - Fairness Reprogramming [42.65700878967251]
We propose a new generic fairness learning paradigm, called FairReprogram, which incorporates the model reprogramming technique.
Specifically, FairReprogram considers the case where models can not be changed and appends to the input a set of perturbations, called the fairness trigger.
We show both theoretically and empirically that the fairness trigger can effectively obscure demographic biases in the output prediction of fixed ML models.
arXiv Detail & Related papers (2022-09-21T09:37:00Z) - Can Active Learning Preemptively Mitigate Fairness Issues? [66.84854430781097]
dataset bias is one of the prevailing causes of unfairness in machine learning.
We study whether models trained with uncertainty-based ALs are fairer in their decisions with respect to a protected class.
We also explore the interaction of algorithmic fairness methods such as gradient reversal (GRAD) and BALD.
arXiv Detail & Related papers (2021-04-14T14:20:22Z) - Fairness-aware Agnostic Federated Learning [47.26747955026486]
We develop a fairness-aware agnostic federated learning framework (AgnosticFair) to deal with the challenge of unknown testing distribution.
We use kernel reweighing functions to assign a reweighing value on each training sample in both loss function and fairness constraint.
Built model can be directly applied to local sites as it guarantees fairness on local data distributions.
arXiv Detail & Related papers (2020-10-10T17:58:20Z) - Fairness in Semi-supervised Learning: Unlabeled Data Help to Reduce
Discrimination [53.3082498402884]
A growing specter in the rise of machine learning is whether the decisions made by machine learning models are fair.
We present a framework of fair semi-supervised learning in the pre-processing phase, including pseudo labeling to predict labels for unlabeled data.
A theoretical decomposition analysis of bias, variance and noise highlights the different sources of discrimination and the impact they have on fairness in semi-supervised learning.
arXiv Detail & Related papers (2020-09-25T05:48:56Z) - Towards Model-Agnostic Post-Hoc Adjustment for Balancing Ranking
Fairness and Algorithm Utility [54.179859639868646]
Bipartite ranking aims to learn a scoring function that ranks positive individuals higher than negative ones from labeled data.
There have been rising concerns on whether the learned scoring function can cause systematic disparity across different protected groups.
We propose a model post-processing framework for balancing them in the bipartite ranking scenario.
arXiv Detail & Related papers (2020-06-15T10:08:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.