A Benchmark for Fairness-Aware Graph Learning
- URL: http://arxiv.org/abs/2407.12112v1
- Date: Tue, 16 Jul 2024 18:43:43 GMT
- Title: A Benchmark for Fairness-Aware Graph Learning
- Authors: Yushun Dong, Song Wang, Zhenyu Lei, Zaiyi Zheng, Jing Ma, Chen Chen, Jundong Li,
- Abstract summary: We present an extensive benchmark on ten representative fairness-aware graph learning methods.
Our in-depth analysis reveals key insights into the strengths and limitations of existing methods.
- Score: 58.515305543487386
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Fairness-aware graph learning has gained increasing attention in recent years. Nevertheless, there lacks a comprehensive benchmark to evaluate and compare different fairness-aware graph learning methods, which blocks practitioners from choosing appropriate ones for broader real-world applications. In this paper, we present an extensive benchmark on ten representative fairness-aware graph learning methods. Specifically, we design a systematic evaluation protocol and conduct experiments on seven real-world datasets to evaluate these methods from multiple perspectives, including group fairness, individual fairness, the balance between different fairness criteria, and computational efficiency. Our in-depth analysis reveals key insights into the strengths and limitations of existing methods. Additionally, we provide practical guidance for applying fairness-aware graph learning methods in applications. To the best of our knowledge, this work serves as an initial step towards comprehensively understanding representative fairness-aware graph learning methods to facilitate future advancements in this area.
Related papers
- Debiasing Graph Representation Learning based on Information Bottleneck [18.35405511009332]
We present the design and implementation of GRAFair, a new framework based on a variational graph auto-encoder.
The crux of GRAFair is the Conditional Fairness Bottleneck, where the objective is to capture the trade-off between the utility of representations and sensitive information of interest.
Experiments on various real-world datasets demonstrate the effectiveness of our proposed method in terms of fairness, utility, robustness, and stability.
arXiv Detail & Related papers (2024-09-02T16:45:23Z) - Few-Shot Learning on Graphs: from Meta-learning to Pre-training and
Prompting [56.25730255038747]
This survey endeavors to synthesize recent developments, provide comparative insights, and identify future directions.
We systematically categorize existing studies into three major families: meta-learning approaches, pre-training approaches, and hybrid approaches.
We analyze the relationships among these methods and compare their strengths and limitations.
arXiv Detail & Related papers (2024-02-02T14:32:42Z) - A Survey of Imbalanced Learning on Graphs: Problems, Techniques, and
Future Directions [64.84521350148513]
Graphs represent interconnected structures prevalent in a myriad of real-world scenarios.
Effective graph analytics, such as graph learning methods, enables users to gain profound insights from graph data.
However, these methods often suffer from data imbalance, a common issue in graph data where certain segments possess abundant data while others are scarce.
This necessitates the emerging field of imbalanced learning on graphs, which aims to correct these data distribution skews for more accurate and representative learning outcomes.
arXiv Detail & Related papers (2023-08-26T09:11:44Z) - FFB: A Fair Fairness Benchmark for In-Processing Group Fairness Methods [84.1077756698332]
This paper introduces the Fair Fairness Benchmark (textsfFFB), a benchmarking framework for in-processing group fairness methods.
We provide a comprehensive analysis of state-of-the-art methods to ensure different notions of group fairness.
arXiv Detail & Related papers (2023-06-15T19:51:28Z) - Fairness meets Cross-Domain Learning: a new perspective on Models and
Metrics [80.07271410743806]
We study the relationship between cross-domain learning (CD) and model fairness.
We introduce a benchmark on face and medical images spanning several demographic groups as well as classification and localization tasks.
Our study covers 14 CD approaches alongside three state-of-the-art fairness algorithms and shows how the former can outperform the latter.
arXiv Detail & Related papers (2023-03-25T09:34:05Z) - State of the Art and Potentialities of Graph-level Learning [54.68482109186052]
Graph-level learning has been applied to many tasks including comparison, regression, classification, and more.
Traditional approaches to learning a set of graphs rely on hand-crafted features, such as substructures.
Deep learning has helped graph-level learning adapt to the growing scale of graphs by extracting features automatically and encoding graphs into low-dimensional representations.
arXiv Detail & Related papers (2023-01-14T09:15:49Z) - FairMILE: Towards an Efficient Framework for Fair Graph Representation
Learning [4.75624470851544]
We study the problem of efficient fair graph representation learning and propose a novel framework FairMILE.
FairMILE is a multi-level paradigm that can efficiently learn graph representations while enforcing fairness and preserving utility.
arXiv Detail & Related papers (2022-11-17T22:52:10Z) - A Survey on Fairness for Machine Learning on Graphs [2.3326951882644553]
This survey is the first one dedicated to fairness for relational data.
It aims to present a comprehensive review of state-of-the-art techniques in fairness on graph mining.
arXiv Detail & Related papers (2022-05-11T10:40:56Z) - Adversarial Stacked Auto-Encoders for Fair Representation Learning [1.061960673667643]
We propose a new fair representation learning approach that leverages different levels of representation of data to tighten the fairness bounds of the learned representation.
Our results show that stacking different auto-encoders and enforcing fairness at different latent spaces result in an improvement of fairness compared to other existing approaches.
arXiv Detail & Related papers (2021-07-27T13:49:18Z) - Fairness-Aware Node Representation Learning [9.850791193881651]
This study addresses fairness issues in graph contrastive learning with fairness-aware graph augmentation designs.
Different fairness notions on graphs are introduced, which serve as guidelines for the proposed graph augmentations.
Experimental results on real social networks are presented to demonstrate that the proposed augmentations can enhance fairness in terms of statistical parity and equal opportunity.
arXiv Detail & Related papers (2021-06-09T21:12:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.