Pursuing Feature Separation based on Neural Collapse for Out-of-Distribution Detection
- URL: http://arxiv.org/abs/2405.17816v1
- Date: Tue, 28 May 2024 04:24:38 GMT
- Title: Pursuing Feature Separation based on Neural Collapse for Out-of-Distribution Detection
- Authors: Yingwen Wu, Ruiji Yu, Xinwen Cheng, Zhengbao He, Xiaolin Huang,
- Abstract summary: In the open world, detecting out-of-distribution (OOD) data, whose labels are disjoint with those of in-distribution (ID) samples, is important for reliable deep neural networks (DNNs)
We propose a simple but effective loss called OrthLoss, which binds the features of OOD data in a subspace to the principal subspace of ID features formed by NC.
Our detection achieves SOTA performance on CIFAR benchmarks without any additional data augmentation or sampling.
- Score: 21.357620914949624
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the open world, detecting out-of-distribution (OOD) data, whose labels are disjoint with those of in-distribution (ID) samples, is important for reliable deep neural networks (DNNs). To achieve better detection performance, one type of approach proposes to fine-tune the model with auxiliary OOD datasets to amplify the difference between ID and OOD data through a separation loss defined on model outputs. However, none of these studies consider enlarging the feature disparity, which should be more effective compared to outputs. The main difficulty lies in the diversity of OOD samples, which makes it hard to describe their feature distribution, let alone design losses to separate them from ID features. In this paper, we neatly fence off the problem based on an aggregation property of ID features named Neural Collapse (NC). NC means that the penultimate features of ID samples within a class are nearly identical to the last layer weight of the corresponding class. Based on this property, we propose a simple but effective loss called OrthLoss, which binds the features of OOD data in a subspace orthogonal to the principal subspace of ID features formed by NC. In this way, the features of ID and OOD samples are separated by different dimensions. By optimizing the feature separation loss rather than purely enlarging output differences, our detection achieves SOTA performance on CIFAR benchmarks without any additional data augmentation or sampling, demonstrating the importance of feature separation in OOD detection. The code will be published.
Related papers
- Dimensionality-induced information loss of outliers in deep neural networks [29.15751143793406]
Out-of-distribution (OOD) detection is a critical issue for systems using a deep neural network (DNN)
We experimentally clarify this issue by investigating the layer dependence of feature representations from multiple perspectives.
We propose a dimensionality-aware OOD detection method based on alignment of features and weights.
arXiv Detail & Related papers (2024-10-29T01:52:46Z) - What If the Input is Expanded in OOD Detection? [77.37433624869857]
Out-of-distribution (OOD) detection aims to identify OOD inputs from unknown classes.
Various scoring functions are proposed to distinguish it from in-distribution (ID) data.
We introduce a novel perspective, i.e., employing different common corruptions on the input space.
arXiv Detail & Related papers (2024-10-24T06:47:28Z) - Out-of-distribution detection based on subspace projection of high-dimensional features output by the last convolutional layer [5.902332693463877]
This paper concentrates on the high-dimensional features output by the final convolutional layer, which contain rich image features.
Our key idea is to project these high-dimensional features into two specific feature subspaces, trained with Predefined Evenly-Distribution Class Centroids (PEDCC)-Loss.
Our method requires only the training of the classification network model, eschewing any need for input pre-processing or specific OOD data pre-tuning.
arXiv Detail & Related papers (2024-05-02T18:33:02Z) - From Global to Local: Multi-scale Out-of-distribution Detection [129.37607313927458]
Out-of-distribution (OOD) detection aims to detect "unknown" data whose labels have not been seen during the in-distribution (ID) training process.
Recent progress in representation learning gives rise to distance-based OOD detection.
We propose Multi-scale OOD DEtection (MODE), a first framework leveraging both global visual information and local region details.
arXiv Detail & Related papers (2023-08-20T11:56:25Z) - LINe: Out-of-Distribution Detection by Leveraging Important Neurons [15.797257361788812]
We introduce a new aspect for analyzing the difference in model outputs between in-distribution data and OOD data.
We propose a novel method, Leveraging Important Neurons (LINe), for post-hoc Out of distribution detection.
arXiv Detail & Related papers (2023-03-24T13:49:05Z) - WDiscOOD: Out-of-Distribution Detection via Whitened Linear Discriminant
Analysis [21.023001428704085]
We propose a novel feature-space OOD detection score based on class-specific and class-agnostic information.
The efficacy of our method, named WDiscOOD, is verified on the large-scale ImageNet-1k benchmark.
arXiv Detail & Related papers (2023-03-14T00:13:57Z) - Energy-based Out-of-Distribution Detection for Graph Neural Networks [76.0242218180483]
We propose a simple, powerful and efficient OOD detection model for GNN-based learning on graphs, which we call GNNSafe.
GNNSafe achieves up to $17.0%$ AUROC improvement over state-of-the-arts and it could serve as simple yet strong baselines in such an under-developed area.
arXiv Detail & Related papers (2023-02-06T16:38:43Z) - Batch-Ensemble Stochastic Neural Networks for Out-of-Distribution
Detection [55.028065567756066]
Out-of-distribution (OOD) detection has recently received much attention from the machine learning community due to its importance in deploying machine learning models in real-world applications.
In this paper we propose an uncertainty quantification approach by modelling the distribution of features.
We incorporate an efficient ensemble mechanism, namely batch-ensemble, to construct the batch-ensemble neural networks (BE-SNNs) and overcome the feature collapse problem.
We show that BE-SNNs yield superior performance on several OOD benchmarks, such as the Two-Moons dataset, the FashionMNIST vs MNIST dataset, FashionM
arXiv Detail & Related papers (2022-06-26T16:00:22Z) - No Shifted Augmentations (NSA): compact distributions for robust
self-supervised Anomaly Detection [4.243926243206826]
Unsupervised Anomaly detection (AD) requires building a notion of normalcy, distinguishing in-distribution (ID) and out-of-distribution (OOD) data.
We investigate how the emph geometrical compactness of the ID feature distribution makes isolating and detecting outliers easier.
We propose novel architectural modifications to the self-supervised feature learning step, that enable such compact distributions for ID data to be learned.
arXiv Detail & Related papers (2022-03-19T15:55:32Z) - Benchmarking Deep Models for Salient Object Detection [67.07247772280212]
We construct a general SALient Object Detection (SALOD) benchmark to conduct a comprehensive comparison among several representative SOD methods.
In the above experiments, we find that existing loss functions usually specialized in some metrics but reported inferior results on the others.
We propose a novel Edge-Aware (EA) loss that promotes deep networks to learn more discriminative features by integrating both pixel- and image-level supervision signals.
arXiv Detail & Related papers (2022-02-07T03:43:16Z) - Contextual-Bandit Anomaly Detection for IoT Data in Distributed
Hierarchical Edge Computing [65.78881372074983]
IoT devices can hardly afford complex deep neural networks (DNN) models, and offloading anomaly detection tasks to the cloud incurs long delay.
We propose and build a demo for an adaptive anomaly detection approach for distributed hierarchical edge computing (HEC) systems.
We show that our proposed approach significantly reduces detection delay without sacrificing accuracy, as compared to offloading detection tasks to the cloud.
arXiv Detail & Related papers (2020-04-15T06:13:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.