Detecting Out-of-Distribution Through the Lens of Neural Collapse
- URL: http://arxiv.org/abs/2311.01479v7
- Date: Thu, 03 Apr 2025 04:16:58 GMT
- Title: Detecting Out-of-Distribution Through the Lens of Neural Collapse
- Authors: Litian Liu, Yao Qin,
- Abstract summary: Out-of-Distribution (OOD) detection is critical for safe deployment.<n>Inspired by the phenomenon of Neural Collapse, we propose a versatile and efficient OOD detection method.
- Score: 7.04686607977352
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Out-of-Distribution (OOD) detection is critical for safe deployment; however, existing detectors often struggle to generalize across datasets of varying scales and model architectures, and some can incur high computational costs in real-world applications. Inspired by the phenomenon of Neural Collapse, we propose a versatile and efficient OOD detection method. Specifically, we re-characterize prior observations that in-distribution (ID) samples form clusters, demonstrating that, with appropriate centering, these clusters align closely with model weight vectors. Additionally, we reveal that ID features tend to expand into a simplex Equiangular Tight Frame, explaining the common observation that ID features are situated farther from the origin than OOD features. Incorporating both insights from Neural Collapse, our OOD detector leverages feature proximity to weight vectors and complements this approach by using feature norms to effectively filter out OOD samples. Extensive experiments on off-the-shelf models demonstrate the robustness of our OOD detector across diverse scenarios, mitigating generalization discrepancies and enhancing overall performance, with inference latency comparable to that of the basic softmax-confidence detector. Code is available here: https://github.com/litianliu/NCI-OOD.
Related papers
- RUNA: Object-level Out-of-Distribution Detection via Regional Uncertainty Alignment of Multimodal Representations [33.971901643313856]
RUNA is a novel framework for detecting out-of-distribution (OOD) objects.
It employs a regional uncertainty alignment mechanism to distinguish ID from OOD objects effectively.
Our experiments show that RUNA substantially surpasses state-of-the-art methods in object-level OOD detection.
arXiv Detail & Related papers (2025-03-28T10:01:55Z) - Going Beyond Conventional OOD Detection [0.0]
Out-of-distribution (OOD) detection is critical to ensure the safe deployment of deep learning models in critical applications.
We present a unified Approach to Spurimatious, fine-grained, and Conventional OOD Detection (ASCOOD)
Our approach effectively mitigates the impact of spurious correlations and encourages capturing fine-grained attributes.
arXiv Detail & Related papers (2024-11-16T13:04:52Z) - Double Descent Meets Out-of-Distribution Detection: Theoretical Insights and Empirical Analysis on the role of model complexity [2.206582444513284]
We propose an expected OOD risk metric to evaluate classifiers confidence on both training and OOD samples.
We show that the OOD risk depicts an infinite peak, when the number of parameters is equal to the number of samples.
arXiv Detail & Related papers (2024-11-04T15:39:12Z) - Dimensionality-induced information loss of outliers in deep neural networks [29.15751143793406]
Out-of-distribution (OOD) detection is a critical issue for systems using a deep neural network (DNN)
We experimentally clarify this issue by investigating the layer dependence of feature representations from multiple perspectives.
We propose a dimensionality-aware OOD detection method based on alignment of features and weights.
arXiv Detail & Related papers (2024-10-29T01:52:46Z) - Can OOD Object Detectors Learn from Foundation Models? [56.03404530594071]
Out-of-distribution (OOD) object detection is a challenging task due to the absence of open-set OOD data.
Inspired by recent advancements in text-to-image generative models, we study the potential of generative models trained on large-scale open-set data to synthesize OOD samples.
We introduce SyncOOD, a simple data curation method that capitalizes on the capabilities of large foundation models.
arXiv Detail & Related papers (2024-09-08T17:28:22Z) - WeiPer: OOD Detection using Weight Perturbations of Class Projections [11.130659240045544]
We introduce perturbations of the class projections in the final fully connected layer which creates a richer representation of the input.
We achieve state-of-the-art OOD detection results across multiple benchmarks of the OpenOOD framework.
arXiv Detail & Related papers (2024-05-27T13:38:28Z) - Optimizing OOD Detection in Molecular Graphs: A Novel Approach with Diffusion Models [71.39421638547164]
We propose to detect OOD molecules by adopting an auxiliary diffusion model-based framework, which compares similarities between input molecules and reconstructed graphs.
Due to the generative bias towards reconstructing ID training samples, the similarity scores of OOD molecules will be much lower to facilitate detection.
Our research pioneers an approach of Prototypical Graph Reconstruction for Molecular OOD Detection, dubbed as PGR-MOOD and hinges on three innovations.
arXiv Detail & Related papers (2024-04-24T03:25:53Z) - Exploring Large Language Models for Multi-Modal Out-of-Distribution
Detection [67.68030805755679]
Large language models (LLMs) encode a wealth of world knowledge and can be prompted to generate descriptive features for each class.
In this paper, we propose to apply world knowledge to enhance OOD detection performance through selective generation from LLMs.
arXiv Detail & Related papers (2023-10-12T04:14:28Z) - NECO: NEural Collapse Based Out-of-distribution detection [2.4958897155282282]
We introduce NECO, a novel post-hoc method for OOD detection.
Our experiments demonstrate that NECO achieves both small and large-scale OOD detection tasks.
We provide a theoretical explanation for the effectiveness of our method in OOD detection.
arXiv Detail & Related papers (2023-10-10T17:53:36Z) - Unleashing Mask: Explore the Intrinsic Out-of-Distribution Detection
Capability [70.72426887518517]
Out-of-distribution (OOD) detection is an indispensable aspect of secure AI when deploying machine learning models in real-world applications.
We propose a novel method, Unleashing Mask, which aims to restore the OOD discriminative capabilities of the well-trained model with ID data.
Our method utilizes a mask to figure out the memorized atypical samples, and then finetune the model or prune it with the introduced mask to forget them.
arXiv Detail & Related papers (2023-06-06T14:23:34Z) - AUTO: Adaptive Outlier Optimization for Online Test-Time OOD Detection [81.49353397201887]
Out-of-distribution (OOD) detection is crucial to deploying machine learning models in open-world applications.
We introduce a novel paradigm called test-time OOD detection, which utilizes unlabeled online data directly at test time to improve OOD detection performance.
We propose adaptive outlier optimization (AUTO), which consists of an in-out-aware filter, an ID memory bank, and a semantically-consistent objective.
arXiv Detail & Related papers (2023-03-22T02:28:54Z) - Energy-based Out-of-Distribution Detection for Graph Neural Networks [76.0242218180483]
We propose a simple, powerful and efficient OOD detection model for GNN-based learning on graphs, which we call GNNSafe.
GNNSafe achieves up to $17.0%$ AUROC improvement over state-of-the-arts and it could serve as simple yet strong baselines in such an under-developed area.
arXiv Detail & Related papers (2023-02-06T16:38:43Z) - Rethinking Out-of-distribution (OOD) Detection: Masked Image Modeling is
All You Need [52.88953913542445]
We find surprisingly that simply using reconstruction-based methods could boost the performance of OOD detection significantly.
We take Masked Image Modeling as a pretext task for our OOD detection framework (MOOD)
arXiv Detail & Related papers (2023-02-06T08:24:41Z) - On the Usefulness of Deep Ensemble Diversity for Out-of-Distribution
Detection [7.221206118679026]
The ability to detect Out-of-Distribution (OOD) data is important in safety-critical applications of deep learning.
An existing intuition in the literature is that the diversity of Deep Ensemble predictions indicates distributional shift.
We show experimentally that this intuition is not valid on ImageNet-scale OOD detection.
arXiv Detail & Related papers (2022-07-15T15:02:38Z) - Unsupervised Anomaly Detection with Adversarial Mirrored AutoEncoders [51.691585766702744]
We propose a variant of Adversarial Autoencoder which uses a mirrored Wasserstein loss in the discriminator to enforce better semantic-level reconstruction.
We put forward an alternative measure of anomaly score to replace the reconstruction-based metric.
Our method outperforms the current state-of-the-art methods for anomaly detection on several OOD detection benchmarks.
arXiv Detail & Related papers (2020-03-24T08:26:58Z) - Robust Out-of-distribution Detection for Neural Networks [51.19164318924997]
We show that existing detection mechanisms can be extremely brittle when evaluating on in-distribution and OOD inputs.
We propose an effective algorithm called ALOE, which performs robust training by exposing the model to both adversarially crafted inlier and outlier examples.
arXiv Detail & Related papers (2020-03-21T17:46:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.