Hyperspectral and multispectral image fusion with arbitrary resolution through self-supervised representations
- URL: http://arxiv.org/abs/2405.17818v2
- Date: Mon, 25 Nov 2024 14:24:39 GMT
- Title: Hyperspectral and multispectral image fusion with arbitrary resolution through self-supervised representations
- Authors: Ting Wang, Zipei Yan, Jizhou Li, Xile Zhao, Chao Wang, Michael Ng,
- Abstract summary: We propose a novel continuous low-rank factorization (CLoRF) by integrating two neural representations into the matrix factorization.
This approach enables us to harness both the low rankness from the matrix factorization and the continuity from neural representation in a self-supervised manner.
- Score: 23.04458119996
- License:
- Abstract: The fusion of a low-resolution hyperspectral image (LR-HSI) with a high-resolution multispectral image (HR-MSI) has emerged as an effective technique for achieving HSI super-resolution (SR). Previous studies have mainly concentrated on estimating the posterior distribution of the latent high-resolution hyperspectral image (HR-HSI), leveraging an appropriate image prior and likelihood computed from the discrepancy between the latent HSI and observed images. Low rankness stands out for preserving latent HSI characteristics through matrix factorization among the various priors. However, the primary limitation in previous studies lies in the generalization of a fusion model with fixed resolution scales, which necessitates retraining whenever output resolutions are changed. To overcome this limitation, we propose a novel continuous low-rank factorization (CLoRF) by integrating two neural representations into the matrix factorization, capturing spatial and spectral information, respectively. This approach enables us to harness both the low rankness from the matrix factorization and the continuity from neural representation in a self-supervised manner.Theoretically, we prove the low-rank property and Lipschitz continuity in the proposed continuous low-rank factorization. Experimentally, our method significantly surpasses existing techniques and achieves user-desired resolutions without the need for neural network retraining. Code is available at https://github.com/wangting1907/CLoRF-Fusion.
Related papers
- Learning Two-factor Representation for Magnetic Resonance Image Super-resolution [1.294284364022674]
We propose a novel method for MR image super-resolution based on two-factor representation.
Specifically, we factorize intensity signals into a linear combination of learnable basis and coefficient factors.
Our method achieves state-of-the-art performance, providing superior visual fidelity and robustness.
arXiv Detail & Related papers (2024-09-15T13:32:24Z) - One-step Generative Diffusion for Realistic Extreme Image Rescaling [47.89362819768323]
We propose a novel framework called One-Step Image Rescaling Diffusion (OSIRDiff) for extreme image rescaling.
OSIRDiff performs rescaling operations in the latent space of a pre-trained autoencoder.
It effectively leverages powerful natural image priors learned by a pre-trained text-to-image diffusion model.
arXiv Detail & Related papers (2024-08-17T09:51:42Z) - A Spectral Diffusion Prior for Hyperspectral Image Super-Resolution [14.405562058304074]
Fusion-based hyperspectral image (HSI) super-resolution aims to produce a high-spatial-resolution HSI by fusing a low-spatial-resolution HSI and a high-spatial-resolution multispectral image.
Motivated by the success of diffusion models, we propose a novel spectral diffusion prior for fusion-based HSI super-resolution.
arXiv Detail & Related papers (2023-11-15T13:40:58Z) - Hyperspectral Image Fusion via Logarithmic Low-rank Tensor Ring
Decomposition [26.76968345244154]
We study the low-rankness of TR factors from the TNN perspective and consider the mode-2 logarithmic TNN (LTNN) on each TR factor.
A novel fusion model is proposed by incorporating this LTNN regularization and the weighted total variation.
arXiv Detail & Related papers (2023-10-16T04:02:34Z) - ESSAformer: Efficient Transformer for Hyperspectral Image
Super-resolution [76.7408734079706]
Single hyperspectral image super-resolution (single-HSI-SR) aims to restore a high-resolution hyperspectral image from a low-resolution observation.
We propose ESSAformer, an ESSA attention-embedded Transformer network for single-HSI-SR with an iterative refining structure.
arXiv Detail & Related papers (2023-07-26T07:45:14Z) - An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
We propose a novel methodology for addressing the hyperspectral image deconvolution problem.
A new optimization problem is formulated, leveraging a learnable regularizer in the form of a neural network.
The derived iterative solver is then expressed as a fixed-point calculation problem within the Deep Equilibrium framework.
arXiv Detail & Related papers (2023-06-10T08:25:16Z) - Semantic Encoder Guided Generative Adversarial Face Ultra-Resolution
Network [15.102899995465041]
We propose a novel face super-resolution method, namely Semantic guided Generative Adversarial Face Ultra-Resolution Network (SEGA-FURN)
The proposed network is composed of a novel semantic encoder that has the ability to capture the embedded semantics to guide adversarial learning and a novel generator that uses a hierarchical architecture named Residual in Internal Block (RIDB)
Experiments on large face datasets have proved that the proposed method can achieve superior super-resolution results and significantly outperform other state-of-the-art methods in both qualitative and quantitative comparisons.
arXiv Detail & Related papers (2022-11-18T23:16:57Z) - HDNet: High-resolution Dual-domain Learning for Spectral Compressive
Imaging [138.04956118993934]
We propose a high-resolution dual-domain learning network (HDNet) for HSI reconstruction.
On the one hand, the proposed HR spatial-spectral attention module with its efficient feature fusion provides continuous and fine pixel-level features.
On the other hand, frequency domain learning (FDL) is introduced for HSI reconstruction to narrow the frequency domain discrepancy.
arXiv Detail & Related papers (2022-03-04T06:37:45Z) - Hierarchical Conditional Flow: A Unified Framework for Image
Super-Resolution and Image Rescaling [139.25215100378284]
We propose a hierarchical conditional flow (HCFlow) as a unified framework for image SR and image rescaling.
HCFlow learns a mapping between HR and LR image pairs by modelling the distribution of the LR image and the rest high-frequency component simultaneously.
To further enhance the performance, other losses such as perceptual loss and GAN loss are combined with the commonly used negative log-likelihood loss in training.
arXiv Detail & Related papers (2021-08-11T16:11:01Z) - Hyperspectral Image Super-resolution via Deep Progressive Zero-centric
Residual Learning [62.52242684874278]
Cross-modality distribution of spatial and spectral information makes the problem challenging.
We propose a novel textitlightweight deep neural network-based framework, namely PZRes-Net.
Our framework learns a high resolution and textitzero-centric residual image, which contains high-frequency spatial details of the scene.
arXiv Detail & Related papers (2020-06-18T06:32:11Z) - Learning Spatial-Spectral Prior for Super-Resolution of Hyperspectral
Imagery [79.69449412334188]
In this paper, we investigate how to adapt state-of-the-art residual learning based single gray/RGB image super-resolution approaches.
We introduce a spatial-spectral prior network (SSPN) to fully exploit the spatial information and the correlation between the spectra of the hyperspectral data.
Experimental results on some hyperspectral images demonstrate that the proposed SSPSR method enhances the details of the recovered high-resolution hyperspectral images.
arXiv Detail & Related papers (2020-05-18T14:25:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.