Deform3DGS: Flexible Deformation for Fast Surgical Scene Reconstruction with Gaussian Splatting
- URL: http://arxiv.org/abs/2405.17835v3
- Date: Thu, 30 May 2024 12:55:14 GMT
- Title: Deform3DGS: Flexible Deformation for Fast Surgical Scene Reconstruction with Gaussian Splatting
- Authors: Shuojue Yang, Qian Li, Daiyun Shen, Bingchen Gong, Qi Dou, Yueming Jin,
- Abstract summary: This work presents a novel fast reconstruction framework, termed Deform3DGS, for deformable tissues during endoscopic surgery.
We introduce 3D Gaussian Splatting, an emerging technology in real-time 3D rendering, into surgical scenes by integrating a point cloud.
We also propose a novel flexible deformation modeling scheme (FDM) to learn tissue deformation dynamics at the level of individual Gaussians.
- Score: 20.147880388740287
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Tissue deformation poses a key challenge for accurate surgical scene reconstruction. Despite yielding high reconstruction quality, existing methods suffer from slow rendering speeds and long training times, limiting their intraoperative applicability. Motivated by recent progress in 3D Gaussian Splatting, an emerging technology in real-time 3D rendering, this work presents a novel fast reconstruction framework, termed Deform3DGS, for deformable tissues during endoscopic surgery. Specifically, we introduce 3D GS into surgical scenes by integrating a point cloud initialization to improve reconstruction. Furthermore, we propose a novel flexible deformation modeling scheme (FDM) to learn tissue deformation dynamics at the level of individual Gaussians. Our FDM can model the surface deformation with efficient representations, allowing for real-time rendering performance. More importantly, FDM significantly accelerates surgical scene reconstruction, demonstrating considerable clinical values, particularly in intraoperative settings where time efficiency is crucial. Experiments on DaVinci robotic surgery videos indicate the efficacy of our approach, showcasing superior reconstruction fidelity PSNR: (37.90) and rendering speed (338.8 FPS) while substantially reducing training time to only 1 minute/scene. Our code is available at https://github.com/jinlab-imvr/Deform3DGS.
Related papers
- SurgicalGS: Dynamic 3D Gaussian Splatting for Accurate Robotic-Assisted Surgical Scene Reconstruction [18.074890506856114]
We present SurgicalGS, a dynamic 3D Gaussian Splatting framework specifically designed for surgical scene reconstruction with improved geometric accuracy.
Our approach first initialises a Gaussian point cloud using depth priors, employing binary motion masks to identify pixels with significant depth variations and fusing point clouds from depth maps across frames for initialisation.
We use the Flexible Deformation Model to represent dynamic scene and introduce a normalised depth regularisation loss along with an unsupervised depth smoothness constraint to ensure more accurate geometric reconstruction.
arXiv Detail & Related papers (2024-10-11T22:46:46Z) - SurgicalGaussian: Deformable 3D Gaussians for High-Fidelity Surgical Scene Reconstruction [17.126895638077574]
Dynamic reconstruction of deformable tissues in endoscopic video is a key technology for robot-assisted surgery.
NeRFs struggle to capture intricate details of objects in the scene.
Our network outperforms existing method on many aspects, including rendering quality, rendering speed and GPU usage.
arXiv Detail & Related papers (2024-07-06T09:31:30Z) - Event3DGS: Event-Based 3D Gaussian Splatting for High-Speed Robot Egomotion [54.197343533492486]
Event3DGS can reconstruct high-fidelity 3D structure and appearance under high-speed egomotion.
Experiments on multiple synthetic and real-world datasets demonstrate the superiority of Event3DGS compared with existing event-based dense 3D scene reconstruction frameworks.
Our framework also allows one to incorporate a few motion-blurred frame-based measurements into the reconstruction process to further improve appearance fidelity without loss of structural accuracy.
arXiv Detail & Related papers (2024-06-05T06:06:03Z) - Creating a Digital Twin of Spinal Surgery: A Proof of Concept [68.37190859183663]
Surgery digitalization is the process of creating a virtual replica of real-world surgery.
We present a proof of concept (PoC) for surgery digitalization that is applied to an ex-vivo spinal surgery.
We employ five RGB-D cameras for dynamic 3D reconstruction of the surgeon, a high-end camera for 3D reconstruction of the anatomy, an infrared stereo camera for surgical instrument tracking, and a laser scanner for 3D reconstruction of the operating room and data fusion.
arXiv Detail & Related papers (2024-03-25T13:09:40Z) - FLex: Joint Pose and Dynamic Radiance Fields Optimization for Stereo Endoscopic Videos [79.50191812646125]
Reconstruction of endoscopic scenes is an important asset for various medical applications, from post-surgery analysis to educational training.
We adress the challenging setup of a moving endoscope within a highly dynamic environment of deforming tissue.
We propose an implicit scene separation into multiple overlapping 4D neural radiance fields (NeRFs) and a progressive optimization scheme jointly optimizing for reconstruction and camera poses from scratch.
This improves the ease-of-use and allows to scale reconstruction capabilities in time to process surgical videos of 5,000 frames and more; an improvement of more than ten times compared to the state of the art while being agnostic to external tracking information
arXiv Detail & Related papers (2024-03-18T19:13:02Z) - EndoGaussian: Real-time Gaussian Splatting for Dynamic Endoscopic Scene
Reconstruction [36.35631592019182]
We introduce EndoGaussian, a real-time endoscopic scene reconstruction framework built on 3D Gaussian Splatting (3DGS)
Our framework significantly boosts the rendering speed to a real-time level.
Experiments on public datasets demonstrate our efficacy against prior SOTAs in many aspects.
arXiv Detail & Related papers (2024-01-23T08:44:26Z) - EndoGS: Deformable Endoscopic Tissues Reconstruction with Gaussian Splatting [20.848027172010358]
We present EndoGS, applying Gaussian Splatting for deformable endoscopic tissue reconstruction.
Our approach incorporates deformation fields to handle dynamic scenes, depth-guided supervision with spatial-temporal weight masks, and surface-aligned regularization terms.
As a result, EndoGS reconstructs and renders high-quality deformable endoscopic tissues from a single-viewpoint video, estimated depth maps, and labeled tool masks.
arXiv Detail & Related papers (2024-01-21T16:14:04Z) - Efficient Deformable Tissue Reconstruction via Orthogonal Neural Plane [58.871015937204255]
We introduce Fast Orthogonal Plane (plane) for the reconstruction of deformable tissues.
We conceptualize surgical procedures as 4D volumes, and break them down into static and dynamic fields comprised of neural planes.
This factorization iscretizes four-dimensional space, leading to a decreased memory usage and faster optimization.
arXiv Detail & Related papers (2023-12-23T13:27:50Z) - Neural LerPlane Representations for Fast 4D Reconstruction of Deformable
Tissues [52.886545681833596]
LerPlane is a novel method for fast and accurate reconstruction of surgical scenes under a single-viewpoint setting.
LerPlane treats surgical procedures as 4D volumes and factorizes them into explicit 2D planes of static and dynamic fields.
LerPlane shares static fields, significantly reducing the workload of dynamic tissue modeling.
arXiv Detail & Related papers (2023-05-31T14:38:35Z) - Fast-SNARF: A Fast Deformer for Articulated Neural Fields [92.68788512596254]
We propose a new articulation module for neural fields, Fast-SNARF, which finds accurate correspondences between canonical space and posed space.
Fast-SNARF is a drop-in replacement in to our previous work, SNARF, while significantly improving its computational efficiency.
Because learning of deformation maps is a crucial component in many 3D human avatar methods, we believe that this work represents a significant step towards the practical creation of 3D virtual humans.
arXiv Detail & Related papers (2022-11-28T17:55:34Z) - Neural Rendering for Stereo 3D Reconstruction of Deformable Tissues in
Robotic Surgery [18.150476919815382]
Reconstruction of the soft tissues in robotic surgery from endoscopic stereo videos is important for many applications.
Previous works on this task mainly rely on SLAM-based approaches, which struggle to handle complex surgical scenes.
Inspired by recent progress in neural rendering, we present a novel framework for deformable tissue reconstruction.
arXiv Detail & Related papers (2022-06-30T13:06:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.