FLex: Joint Pose and Dynamic Radiance Fields Optimization for Stereo Endoscopic Videos
- URL: http://arxiv.org/abs/2403.12198v1
- Date: Mon, 18 Mar 2024 19:13:02 GMT
- Title: FLex: Joint Pose and Dynamic Radiance Fields Optimization for Stereo Endoscopic Videos
- Authors: Florian Philipp Stilz, Mert Asim Karaoglu, Felix Tristram, Nassir Navab, Benjamin Busam, Alexander Ladikos,
- Abstract summary: Reconstruction of endoscopic scenes is an important asset for various medical applications, from post-surgery analysis to educational training.
We adress the challenging setup of a moving endoscope within a highly dynamic environment of deforming tissue.
We propose an implicit scene separation into multiple overlapping 4D neural radiance fields (NeRFs) and a progressive optimization scheme jointly optimizing for reconstruction and camera poses from scratch.
This improves the ease-of-use and allows to scale reconstruction capabilities in time to process surgical videos of 5,000 frames and more; an improvement of more than ten times compared to the state of the art while being agnostic to external tracking information
- Score: 79.50191812646125
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reconstruction of endoscopic scenes is an important asset for various medical applications, from post-surgery analysis to educational training. Neural rendering has recently shown promising results in endoscopic reconstruction with deforming tissue. However, the setup has been restricted to a static endoscope, limited deformation, or required an external tracking device to retrieve camera pose information of the endoscopic camera. With FLex we adress the challenging setup of a moving endoscope within a highly dynamic environment of deforming tissue. We propose an implicit scene separation into multiple overlapping 4D neural radiance fields (NeRFs) and a progressive optimization scheme jointly optimizing for reconstruction and camera poses from scratch. This improves the ease-of-use and allows to scale reconstruction capabilities in time to process surgical videos of 5,000 frames and more; an improvement of more than ten times compared to the state of the art while being agnostic to external tracking information. Extensive evaluations on the StereoMIS dataset show that FLex significantly improves the quality of novel view synthesis while maintaining competitive pose accuracy.
Related papers
- High-fidelity Endoscopic Image Synthesis by Utilizing Depth-guided Neural Surfaces [18.948630080040576]
We introduce a novel method for colon section reconstruction by leveraging NeuS applied to endoscopic images, supplemented by a single frame of depth map.
Our approach demonstrates exceptional accuracy in completely rendering colon sections, even capturing unseen portions of the surface.
This breakthrough opens avenues for achieving stable and consistently scaled reconstructions, promising enhanced quality in cancer screening procedures and treatment interventions.
arXiv Detail & Related papers (2024-04-20T18:06:26Z) - EndoGSLAM: Real-Time Dense Reconstruction and Tracking in Endoscopic Surgeries using Gaussian Splatting [53.38166294158047]
EndoGSLAM is an efficient approach for endoscopic surgeries, which integrates streamlined representation and differentiable Gaussianization.
Experiments show that EndoGSLAM achieves a better trade-off between intraoperative availability and reconstruction quality than traditional or neural SLAM approaches.
arXiv Detail & Related papers (2024-03-22T11:27:43Z) - Efficient Deformable Tissue Reconstruction via Orthogonal Neural Plane [58.871015937204255]
We introduce Fast Orthogonal Plane (plane) for the reconstruction of deformable tissues.
We conceptualize surgical procedures as 4D volumes, and break them down into static and dynamic fields comprised of neural planes.
This factorization iscretizes four-dimensional space, leading to a decreased memory usage and faster optimization.
arXiv Detail & Related papers (2023-12-23T13:27:50Z) - BASED: Bundle-Adjusting Surgical Endoscopic Dynamic Video Reconstruction using Neural Radiance Fields [5.773068487121897]
Reconstruction of deformable scenes from endoscopic videos is important for many applications.
Our work adopts the Neural Radiance Fields (NeRF) approach to learning 3D implicit representations of scenes.
We demonstrate this approach on endoscopic surgical scenes from robotic surgery.
arXiv Detail & Related papers (2023-09-27T00:20:36Z) - AiAReSeg: Catheter Detection and Segmentation in Interventional
Ultrasound using Transformers [75.20925220246689]
endovascular surgeries are performed using the golden standard of Fluoroscopy, which uses ionising radiation to visualise catheters and vasculature.
This work proposes a solution using an adaptation of a state-of-the-art machine learning transformer architecture to detect and segment catheters in axial interventional Ultrasound image sequences.
arXiv Detail & Related papers (2023-09-25T19:34:12Z) - Neural LerPlane Representations for Fast 4D Reconstruction of Deformable
Tissues [52.886545681833596]
LerPlane is a novel method for fast and accurate reconstruction of surgical scenes under a single-viewpoint setting.
LerPlane treats surgical procedures as 4D volumes and factorizes them into explicit 2D planes of static and dynamic fields.
LerPlane shares static fields, significantly reducing the workload of dynamic tissue modeling.
arXiv Detail & Related papers (2023-05-31T14:38:35Z) - Learning How To Robustly Estimate Camera Pose in Endoscopic Videos [5.073761189475753]
We propose a solution for stereo endoscopes that estimates depth and optical flow to minimize two geometric losses for camera pose estimation.
Most importantly, we introduce two learned adaptive per-pixel weight mappings that balance contributions according to the input image content.
We validate our approach on the publicly available SCARED dataset and introduce a new in-vivo dataset, StereoMIS.
arXiv Detail & Related papers (2023-04-17T07:05:01Z) - OADAT: Experimental and Synthetic Clinical Optoacoustic Data for
Standardized Image Processing [62.993663757843464]
Optoacoustic (OA) imaging is based on excitation of biological tissues with nanosecond-duration laser pulses followed by detection of ultrasound waves generated via light-absorption-mediated thermoelastic expansion.
OA imaging features a powerful combination between rich optical contrast and high resolution in deep tissues.
No standardized datasets generated with different types of experimental set-up and associated processing methods are available to facilitate advances in broader applications of OA in clinical settings.
arXiv Detail & Related papers (2022-06-17T08:11:26Z) - E-DSSR: Efficient Dynamic Surgical Scene Reconstruction with
Transformer-based Stereoscopic Depth Perception [15.927060244702686]
We present an efficient reconstruction pipeline for highly dynamic surgical scenes that runs at 28 fps.
Specifically, we design a transformer-based stereoscopic depth perception for efficient depth estimation.
We evaluate the proposed pipeline on two datasets, the public Hamlyn Centre Endoscopic Video dataset and our in-house DaVinci robotic surgery dataset.
arXiv Detail & Related papers (2021-07-01T05:57:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.