論文の概要: Diffusion Rejection Sampling
- arxiv url: http://arxiv.org/abs/2405.17880v1
- Date: Tue, 28 May 2024 07:00:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-29 20:07:07.486414
- Title: Diffusion Rejection Sampling
- Title(参考訳): 拡散リジェクションサンプリング
- Authors: Byeonghu Na, Yeongmin Kim, Minsang Park, Donghyeok Shin, Wanmo Kang, Il-Chul Moon,
- Abstract要約: Diffusion Rejection Sampling (DiffRS) は、サンプリングされたトランジションカーネルを各タイムステップで真のカーネルと整列するリジェクションサンプリングスキームである。
提案手法は, 各中間段階における試料の品質を評価し, 試料に応じて異なる作業で精製する機構とみなすことができる。
実験により,ベンチマークデータセット上でのDiffRSの最先端性能と高速拡散サンプリングおよび大規模テキスト・画像拡散モデルに対するDiffRSの有効性を実証した。
- 参考スコア(独自算出の注目度): 13.945372555871414
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advances in powerful pre-trained diffusion models encourage the development of methods to improve the sampling performance under well-trained diffusion models. This paper introduces Diffusion Rejection Sampling (DiffRS), which uses a rejection sampling scheme that aligns the sampling transition kernels with the true ones at each timestep. The proposed method can be viewed as a mechanism that evaluates the quality of samples at each intermediate timestep and refines them with varying effort depending on the sample. Theoretical analysis shows that DiffRS can achieve a tighter bound on sampling error compared to pre-trained models. Empirical results demonstrate the state-of-the-art performance of DiffRS on the benchmark datasets and the effectiveness of DiffRS for fast diffusion samplers and large-scale text-to-image diffusion models. Our code is available at https://github.com/aailabkaist/DiffRS.
- Abstract(参考訳): 強力な事前学習拡散モデルの最近の進歩は、十分に訓練された拡散モデルの下でサンプリング性能を改善する方法の開発を促進する。
本稿では,DiffRS (Diffusion Rejection Sampling) を導入し,各タイミングでサンプリングトランジションカーネルを真のカーネルに整列させるリジェクションサンプリング方式を提案する。
提案手法は, 各中間段階における試料の品質を評価し, 試料に応じて異なる作業で精製する機構とみなすことができる。
理論的解析により、DiffRSは事前訓練されたモデルと比較してサンプリング誤差に厳密な境界を達成できることが示されている。
実験により,ベンチマークデータセット上でのDiffRSの最先端性能と高速拡散サンプリングおよび大規模テキスト・画像拡散モデルに対するDiffRSの有効性を実証した。
私たちのコードはhttps://github.com/aailabkaist/DiffRS.comで公開されています。
関連論文リスト
- Single-Step Consistent Diffusion Samplers [8.758218443992467]
既存のサンプリングアルゴリズムは通常、高品質なサンプルを作成するために多くの反復的なステップを必要とする。
単一ステップで高忠実度サンプルを生成するために設計された新しいサンプルクラスである,一貫した拡散サンプリングを導入している。
提案手法は,従来の拡散サンプリング装置で要求されるネットワーク評価の1%以下を用いて,高忠実度サンプルが得られることを示す。
論文 参考訳(メタデータ) (2025-02-11T14:25:52Z) - Provable Statistical Rates for Consistency Diffusion Models [87.28777947976573]
最先端の性能にもかかわらず、拡散モデルは、多くのステップが伴うため、遅いサンプル生成で知られている。
本稿では, 整合性モデルに関する最初の統計理論に寄与し, 分散不整合最小化問題としてトレーニングを定式化している。
論文 参考訳(メタデータ) (2024-06-23T20:34:18Z) - Boosting Diffusion Models with Moving Average Sampling in Frequency Domain [101.43824674873508]
拡散モデルは、現在のサンプルに頼って次のサンプルをノイズ化し、おそらく不安定化を引き起こす。
本稿では,反復的復調過程をモデル最適化として再解釈し,移動平均機構を利用して全ての先行サンプルをアンサンブルする。
周波数領域における平均サンプリング(MASF)の動作」という完全なアプローチを命名する。
論文 参考訳(メタデータ) (2024-03-26T16:57:55Z) - Diffusion-TS: Interpretable Diffusion for General Time Series Generation [6.639630994040322]
Diffusion-TSは、高品質な時系列サンプルを生成する新しい拡散ベースのフレームワークである。
各拡散ステップのノイズの代わりにサンプルを直接再構成するようにモデルを訓練し、フーリエに基づく損失項を組み合わせた。
その結果,Diffusion-TSは時系列の様々な現実的解析において最先端の結果が得られることがわかった。
論文 参考訳(メタデータ) (2024-03-04T05:39:23Z) - Improved off-policy training of diffusion samplers [93.66433483772055]
本研究では,非正規化密度やエネルギー関数を持つ分布からサンプルを抽出する拡散モデルの訓練問題について検討する。
シミュレーションに基づく変分法や非政治手法など,拡散構造推論手法のベンチマークを行った。
我々の結果は、過去の研究の主張に疑問を投げかけながら、既存のアルゴリズムの相対的な利点を浮き彫りにした。
論文 参考訳(メタデータ) (2024-02-07T18:51:49Z) - Fast Sampling via Discrete Non-Markov Diffusion Models with Predetermined Transition Time [49.598085130313514]
離散非マルコフ拡散モデル(DNDM)を提案する。
これにより、トレーニング不要なサンプリングアルゴリズムにより、関数評価の数を大幅に削減できる。
有限ステップサンプリングから無限ステップサンプリングへの移行について検討し、離散プロセスと連続プロセスのギャップを埋めるための新たな洞察を提供する。
論文 参考訳(メタデータ) (2023-12-14T18:14:11Z) - Solving Diffusion ODEs with Optimal Boundary Conditions for Better Image Super-Resolution [82.50210340928173]
拡散モデルのランダム性は非効率性と不安定性をもたらすため、SR結果の品質を保証することは困難である。
本稿では,一連の拡散型SR手法の恩恵を受ける可能性を持つプラグアンドプレイサンプリング手法を提案する。
提案手法によりサンプリングされたSR結果の質は, 学習前の拡散ベースSRモデルと同一のランダム性を有する現在の手法でサンプリングされた結果の質より優れる。
論文 参考訳(メタデータ) (2023-05-24T17:09:54Z) - Towards Controllable Diffusion Models via Reward-Guided Exploration [15.857464051475294]
強化学習(RL)による拡散モデルの学習段階を導く新しい枠組みを提案する。
RLは、政策そのものではなく、指数スケールの報酬に比例したペイオフ分布からのサンプルによる政策勾配を計算することができる。
3次元形状と分子生成タスクの実験は、既存の条件拡散モデルよりも大幅に改善されている。
論文 参考訳(メタデータ) (2023-04-14T13:51:26Z) - Denoising Diffusion Samplers [41.796349001299156]
拡散モデルの認知は、多くの領域で最先端の結果を提供する生成モデルの一般的なクラスである。
我々は、非正規化確率密度関数から大まかにサンプリングし、それらの正規化定数を推定する類似のアイデアを探求する。
この文脈ではスコアマッチングは適用できないが、モンテカルロサンプリングのために生成的モデリングで導入された多くのアイデアを利用することができる。
論文 参考訳(メタデータ) (2023-02-27T14:37:16Z) - Fast Inference in Denoising Diffusion Models via MMD Finetuning [23.779985842891705]
拡散モデルの高速サンプリング法であるMDD-DDMを提案する。
我々のアプローチは、学習した分布を所定の予算のタイムステップで微調整するために、最大平均離散性(MMD)を使用するという考え方に基づいている。
提案手法は,広範に普及した拡散モデルで要求されるわずかな時間で高品質なサンプルを生成できることが示唆された。
論文 参考訳(メタデータ) (2023-01-19T09:48:07Z) - ProDiff: Progressive Fast Diffusion Model For High-Quality
Text-to-Speech [63.780196620966905]
本稿では,高品質テキスト合成のためのプログレッシブ高速拡散モデルであるProDiffを提案する。
ProDiffはクリーンデータを直接予測することでデノナイジングモデルをパラメータ化し、サンプリングを高速化する際の品質劣化を回避する。
評価の結果,高忠実度メル-スペクトログラムの合成にProDiffは2回しか要しないことがわかった。
ProDiffは1つのNVIDIA 2080Ti GPU上で、サンプリング速度をリアルタイムより24倍高速にする。
論文 参考訳(メタデータ) (2022-07-13T17:45:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。