論文の概要: Relational Self-supervised Distillation with Compact Descriptors for Image Copy Detection
- arxiv url: http://arxiv.org/abs/2405.17928v3
- Date: Fri, 7 Jun 2024 04:51:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-10 18:58:44.795061
- Title: Relational Self-supervised Distillation with Compact Descriptors for Image Copy Detection
- Title(参考訳): 画像コピー検出のためのコンパクトディスクリプタによる自己教師付き蒸留
- Authors: Juntae Kim, Sungwon Woo, Jongho Nang,
- Abstract要約: 本稿では,著作権保護のためのオンライン共有プラットフォームにおける課題である画像コピー検出について述べる。
本稿では,軽量ネットワークとコンパクトディスクリプタを用いて,競争力のある性能を実現する手法を提案する。
- 参考スコア(独自算出の注目度): 4.336779198334904
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper addresses image copy detection, a task in online sharing platforms for copyright protection. While previous approaches have performed exceptionally well, the large size of their networks and descriptors remains a significant disadvantage, complicating their practical application. In this paper, we propose a novel method that achieves a competitive performance by using a lightweight network and compact descriptors. By utilizing relational self-supervised distillation to transfer knowledge from a large network to a small network, we enable the training of lightweight networks with a small descriptor size. Our approach, which we call Relational self-supervised Distillation with Compact Descriptors (RDCD), introduces relational self-supervised distillation (RSD) for flexible representation in a smaller feature space and applies contrastive learning with a hard negative (HN) loss to prevent dimensional collapse. We demonstrate the effectiveness of our method using the DISC2021, Copydays, and NDEC benchmark datasets, with which our lightweight network with compact descriptors achieves a competitive performance. For the DISC2021 benchmark, ResNet-50/EfficientNet- B0 are used as a teacher and student respectively, the micro average precision improved by 5.0%/4.9%/5.9% for 64/128/256 descriptor sizes compared to the baseline method.
- Abstract(参考訳): 本稿では,著作権保護のためのオンライン共有プラットフォームにおける課題である画像コピー検出について述べる。
従来のアプローチは非常にうまく機能してきたが、ネットワークとディスクリプタの大規模化は依然として大きな欠点であり、実用的応用を複雑にしている。
本稿では,軽量ネットワークとコンパクトディスクリプタを用いて,競争性能を実現する手法を提案する。
大規模ネットワークから小さなネットワークへ知識を伝達するために,リレーショナル自己教師型蒸留を利用することで,少ない記述子サイズの軽量ネットワークのトレーニングを可能にする。
提案手法はRDCD(Relational Self-supervised Distillation with Compact Descriptor)と呼ばれ,より小さな特徴空間におけるフレキシブルな表現のためのリレーショナル自己教師型蒸留(RSD)を導入し,高負(HN)損失によるコントラスト学習を適用し,次元崩壊を防止する。
提案手法の有効性をDEC2021, Copydays, NDECベンチマークを用いて実証し, コンパクトな記述子を用いた軽量ネットワークによる競合性能を実現する。
DISC2021ベンチマークでは、ResNet-50/EfficientNet-B0を教師と学生それぞれに使用し、ベースライン法と比較して64/128/256ディスクリプタサイズのマイクロ平均精度を5.0%/4.9%/5.9%改善した。
関連論文リスト
- Large-to-small Image Resolution Asymmetry in Deep Metric Learning [13.81293627340993]
我々は、高速な表現抽出を可能にするために、クエリの軽量処理による非対称なセットアップを小さな画像解像度で探索する。
目標は、大規模な解像度画像を操作するために訓練されたデータベースサンプルのためのネットワークと、きめ細かい画像の詳細の恩恵を得ることである。
我々は、分解能非対称性は、アーキテクチャ非対称性よりも性能/効率のトレードオフを最適化するより良い方法である、と結論付けている。
論文 参考訳(メタデータ) (2022-10-11T14:05:30Z) - Learning-Based Dimensionality Reduction for Computing Compact and
Effective Local Feature Descriptors [101.62384271200169]
特徴の形でのイメージパッチの独特な表現は多くのコンピュータビジョンとロボティクスのタスクの重要な構成要素である。
マルチ層パーセプトロン(MLP)を用いて,低次元ながら高品質な記述子を抽出する。
視覚的ローカライゼーション、パッチ検証、画像マッチング、検索など、さまざまなアプリケーションについて検討する。
論文 参考訳(メタデータ) (2022-09-27T17:59:04Z) - Correlation Verification for Image Retrieval [15.823918683848877]
相関検証ネットワーク (CVNet) という新しい画像検索手法を提案する。
CVNetは、様々な画像対から多様な幾何マッチングパターンを学習しながら、高密度特徴相関を画像類似性に圧縮する。
提案するネットワークは,有意なマージンを有する複数の検索ベンチマークにおいて,最先端の性能を示す。
論文 参考訳(メタデータ) (2022-04-04T13:18:49Z) - ZippyPoint: Fast Interest Point Detection, Description, and Matching
through Mixed Precision Discretization [71.91942002659795]
我々は,ネットワーク量子化技術を用いて推論を高速化し,計算限定プラットフォームでの利用を可能にする。
バイナリディスクリプタを用いた効率的な量子化ネットワークZippyPointは,ネットワーク実行速度,ディスクリプタマッチング速度,3Dモデルサイズを改善する。
これらの改善は、ホモグラフィー推定、視覚的ローカライゼーション、マップフリーな視覚的再ローカライゼーションのタスクで評価されるように、小さなパフォーマンス劣化をもたらす。
論文 参考訳(メタデータ) (2022-03-07T18:59:03Z) - A Self-Supervised Descriptor for Image Copy Detection [13.624995441674642]
本稿では,自己監督型コントラスト学習目標に基づくモデルであるSSCDを紹介する。
本手法は,アーキテクチャと学習目標を変更することで,コピー検出タスクに適応する。
このアプローチはエントロピー正規化項に依存し、記述子ベクトル間の一貫した分離を促進する。
論文 参考訳(メタデータ) (2022-02-21T14:25:32Z) - Deep Structured Instance Graph for Distilling Object Detectors [82.16270736573176]
本稿では,検出システム内の情報を利用して,検出知識の蒸留を容易にするための簡単な知識構造を提案する。
我々は,1段と2段の両方の検出器上で,多様な学生-教師ペアによるCOCOオブジェクト検出の課題に対して,新しい最先端の成果を達成した。
論文 参考訳(メタデータ) (2021-09-27T08:26:00Z) - Manifold Regularized Dynamic Network Pruning [102.24146031250034]
本稿では,全インスタンスの多様体情報をプルーンドネットワークの空間に埋め込むことにより,冗長フィルタを動的に除去する新しいパラダイムを提案する。
提案手法の有効性をいくつかのベンチマークで検証し,精度と計算コストの両面で優れた性能を示す。
論文 参考訳(メタデータ) (2021-03-10T03:59:03Z) - Progressively Guided Alternate Refinement Network for RGB-D Salient
Object Detection [63.18846475183332]
我々は,RGB-Dの高次物体検出のための効率的かつコンパクトなディープネットワークを開発することを目指している。
そこで本研究では,改良のための改良ネットワークを提案する。
我々のモデルは、既存の最先端のアプローチよりも大きなマージンで優れています。
論文 参考訳(メタデータ) (2020-08-17T02:55:06Z) - ReMarNet: Conjoint Relation and Margin Learning for Small-Sample Image
Classification [49.87503122462432]
ReMarNet(Relation-and-Margin Learning Network)と呼ばれるニューラルネットワークを導入する。
本手法は,上記2つの分類機構の双方において優れた性能を発揮する特徴を学習するために,異なるバックボーンの2つのネットワークを組み立てる。
4つの画像データセットを用いた実験により,本手法はラベル付きサンプルの小さな集合から識別的特徴を学習するのに有効であることが示された。
論文 参考訳(メタデータ) (2020-06-27T13:50:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。