論文の概要: An empirical study of bloated dependencies in CommonJS packages
- arxiv url: http://arxiv.org/abs/2405.17939v1
- Date: Tue, 28 May 2024 08:04:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-29 19:37:52.930853
- Title: An empirical study of bloated dependencies in CommonJS packages
- Title(参考訳): CommonJSパッケージにおける肥大化依存性に関する実証的研究
- Authors: Yuxin Liu, Deepika Tiwari, Cristian Bogdan, Benoit Baudry,
- Abstract要約: サーバサイドアプリケーションで完全に使用されていない肥大化した依存関係を調査するために、実証的研究を行う。
本稿では,ファイルアクセスを監視し,実行中にどの依存関係がアクセスされないかを決定するトレースベースの動的解析手法を提案する。
以上の結果から,パッケージマネージャにおける依存性のデブロ化に対するネイティブサポートは,依存関係維持の負担を大幅に軽減する可能性が示唆された。
- 参考スコア(独自算出の注目度): 6.115666382910127
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: JavaScript packages are notoriously prone to bloat, a factor that significantly impacts the performance and maintainability of web applications. While web bundlers and tree-shaking can mitigate this issue in client-side applications at the function level, they cannot effectively detect and remove bloat in server-side applications. In this paper, we conduct an empirical study to investigate the bloated dependencies that are entirely unused within server-side applications. Our study focuses on applications built with the widely used and highly dynamic CommonJS module system. We propose a trace-based dynamic analysis that monitors file access, to determine which dependencies are not accessed during runtime. To conduct our study, we curate an original dataset of 92 CommonJS packages with a median test coverage of 96.9% and a total of 50,661 dependencies. Our dynamic analysis identifies and successfully removes 50.7% of these dependencies while maintaining the correct build of all packages. Furthermore, we find that 14.9% of directly used dependencies and 51.3% of indirect dependencies are bloated. A key insight is that focusing on removing only the direct bloated dependencies by cleaning the package.json file, also removes a significant share of unnecessary bloated indirect dependencies. Compared to the state-of-the-art dynamic debloating technique, our analysis based on file accesses has fewer false positives, and demonstrates higher accuracy in detecting bloated dependencies. Our findings suggest that native support for dependency debloating in package managers could significantly alleviate the burden of maintaining dependencies.
- Abstract(参考訳): JavaScriptパッケージは肥大化しやすいことで知られており、これはWebアプリケーションのパフォーマンスと保守性に大きな影響を与えている。
ウェブバンドルとツリーシェイキングは、機能レベルでクライアント側のアプリケーションでこの問題を軽減することができるが、サーバ側のアプリケーションの肥大を効果的に検出し、排除することはできない。
本稿では,サーバサイドアプリケーションで完全に使用されていない肥大化した依存関係について,実証的研究を行う。
本研究は,CommonJSモジュールシステムを用いて構築されたアプリケーションに焦点をあてる。
本稿では,ファイルアクセスを監視し,実行中にどの依存関係がアクセスされないかを決定するトレースベースの動的解析手法を提案する。
調査を行うため、92のCommonJSパッケージのオリジナルのデータセットを、96.9%、および50,661の依存関係でキュレートした。
私たちの動的分析は、すべてのパッケージの正しいビルドを維持しながら、これらの依存関係の50.7%を特定し、うまく除去します。
さらに、直接使用される依存関係の14.9%と間接的な依存関係の51.3%が肥大化していることがわかった。
重要な洞察は、package.jsonファイルのクリーニングによって直接肥大化した依存関係だけを取り除くことに集中することで、不要な肥大化した間接的な依存関係のかなりのシェアを取り除くことである。
現状の動的デブロ化技術と比較すると,ファイルアクセスに基づく解析では偽陽性が減り,肥大した依存関係の検出精度が向上した。
以上の結果から,パッケージマネージャにおける依存性のデブロ化に対するネイティブサポートは,依存関係維持の負担を大幅に軽減する可能性が示唆された。
関連論文リスト
- DI-BENCH: Benchmarking Large Language Models on Dependency Inference with Testable Repositories at Scale [39.92722886613929]
DI-BENCHは、大規模言語モデルの依存性推論能力を評価するために設計された、大規模なベンチマークおよび評価フレームワークである。
ベンチマークでは、Python、C#、Rust、JavaScriptにまたがるテスト環境を備えた581のリポジトリが提供されている。
テキストと実行ベースのメトリクスによる大規模な実験により、現在の最高のパフォーマンスモデルは42.9%の実行パス率しか達成していないことが明らかになった。
論文 参考訳(メタデータ) (2025-01-23T14:27:11Z) - Commit0: Library Generation from Scratch [77.38414688148006]
Commit0は、AIエージェントにスクラッチからライブラリを書くよう促すベンチマークである。
エージェントには、ライブラリのAPIを概説する仕様文書と、インタラクティブなユニットテストスイートが提供されている。
Commit0はまた、モデルが生成したコードに対して静的解析と実行フィードバックを受け取る、インタラクティブな環境も提供する。
論文 参考訳(メタデータ) (2024-12-02T18:11:30Z) - A Preliminary Study on Self-Contained Libraries in the NPM Ecosystem [2.221643499902673]
現代のソフトウェアエコシステムにおけるライブラリの普及は、依存関係の複雑なネットワークを生み出します。
依存関係がゼロのライブラリは自己完結型になる。
本稿では,NPMエコシステムにおける自己完結型ライブラリの特徴について考察する。
論文 参考訳(メタデータ) (2024-06-17T09:33:49Z) - See to Believe: Using Visualization To Motivate Updating Third-party Dependencies [1.7914660044009358]
サードパーティの依存関係を使用したアプリケーションによって導入されたセキュリティ脆弱性が増加している。
開発者はライブラリのアップデートに注意を払っており、脆弱性の修正にも注意している。
本稿では、依存性グラフ可視化(DGV)アプローチが、開発者が更新を動機付けると仮定する。
論文 参考訳(メタデータ) (2024-05-15T03:57:27Z) - Dependency Practices for Vulnerability Mitigation [4.710141711181836]
npmエコシステムの450以上の脆弱性を分析し、依存するパッケージが脆弱なままである理由を理解します。
依存関係によって感染した20万以上のnpmパッケージを特定します。
私たちは9つの機能を使って、脆弱性修正を迅速に適用し、脆弱性のさらなる伝播を防ぐパッケージを特定する予測モデルを構築しています。
論文 参考訳(メタデータ) (2023-10-11T19:48:46Z) - Analyzing Maintenance Activities of Software Libraries [65.268245109828]
近年、産業アプリケーションはオープンソースソフトウェアライブラリを深く統合している。
産業アプリケーションに対する自動監視アプローチを導入して、オープンソース依存関係を特定し、その現状や将来的なメンテナンス活動に関するネガティブな兆候を示したいと思っています。
論文 参考訳(メタデータ) (2023-06-09T16:51:25Z) - On the Security Blind Spots of Software Composition Analysis [46.1389163921338]
Mavenリポジトリで脆弱性のあるクローンを検出するための新しいアプローチを提案する。
Maven Centralから53万以上の潜在的な脆弱性のあるクローンを検索します。
検出された727個の脆弱なクローンを検出し、それぞれに検証可能な脆弱性証明プロジェクトを合成する。
論文 参考訳(メタデータ) (2023-06-08T20:14:46Z) - Reference Twice: A Simple and Unified Baseline for Few-Shot Instance Segmentation [103.90033029330527]
FSIS(Few-Shot Instance)は、サポート例が限定された新しいクラスの検出とセグメンテーションを必要とする。
我々は、FSISのサポートとクエリ機能の関係を利用するための統合フレームワーク、Reference Twice(RefT)を導入する。
論文 参考訳(メタデータ) (2023-01-03T15:33:48Z) - Demystifying Dependency Bugs in Deep Learning Stack [7.488059560714949]
本稿では、Deep Learningスタック全体にわたる依存性バグ(DB)の症状、根本原因、修正パターンを特徴付ける。
以上の結果から,依存性管理の実践的意義が明らかとなった。
論文 参考訳(メタデータ) (2022-07-21T07:56:03Z) - Pack Together: Entity and Relation Extraction with Levitated Marker [61.232174424421025]
エンコーダにマーカを戦略的にパッケージ化することにより,スパン(ペア)間の依存関係を検討するために,Packed Levitated Markersという新しいスパン表現手法を提案する。
実験の結果,3つの平坦なNERタスクにおいて,有望なマーカーが充填されたモデルの方がシーケンスラベルモデルよりも0.4%-1.9%優れ,トークンコンキャットモデルを6つのNERベンチマークで上回っていることがわかった。
論文 参考訳(メタデータ) (2021-09-13T15:38:13Z) - Modeling Multi-Label Action Dependencies for Temporal Action
Localization [53.53490517832068]
実世界のビデオには、アクションクラス間の固有の関係を持つ多くの複雑なアクションが含まれている。
非発生ビデオにおける時間的行動の局在化のタスクのためのこれらの行動関係をモデル化する注意に基づくアーキテクチャを提案する。
マルチラベルアクションローカリゼーションベンチマークの最先端の方法よりもパフォーマンスが向上しました。
論文 参考訳(メタデータ) (2021-03-04T13:37:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。