The communication power of a noisy qubit
- URL: http://arxiv.org/abs/2405.17946v2
- Date: Thu, 13 Feb 2025 13:37:02 GMT
- Title: The communication power of a noisy qubit
- Authors: Giulio Chiribella, Saptarshi Roy, Tamal Guha, Sutapa Saha,
- Abstract summary: A fundamental limitation of quantum communication is that a single qubit can carry at most 1 bit of classical information.
For an important class of quantum communication channels, known as entanglement-breaking, this limitation holds even if the sender and receiver share entangled particles.
We show that no classical strategy using a noisy bit channel can ensure that the bomb is avoided, even if the sender and receiver share arbitrary amounts of randomness.
- Score: 1.187456026346823
- License:
- Abstract: A fundamental limitation of quantum communication is that a single qubit can carry at most 1 bit of classical information. For an important class of quantum communication channels, known as entanglement-breaking, this limitation holds even if the sender and receiver share entangled particles. But does this mean that, for the purpose of communicating classical messages, a noisy entanglement-breaking qubit channel can be replaced by a noisy bit channel? Here we answer the question in the negative. We introduce a game, similar to the Monty Hall problem in classical statistics, where a sender assists a receiver in finding a valuable item (the prize) hidden into one of four possible boxes, while avoiding a hazardous item (the bomb) hidden in one of the remaining three boxes. We show that no classical strategy using a noisy bit channel can ensure that the bomb is avoided, even if the sender and receiver share arbitrary amounts of randomness. In contrast, communication of a qubit through a class of noisy entanglement-breaking channels, which we call quantum NOT channels, allows the players to deterministically avoid the bomb and to find the prize with a guaranteed nonzero probability. Our findings show that the communication of classical messages through a noisy entanglement-breaking qubit channel assisted by quantum entanglement cannot, in general, be simulated by communication through a noisy bit channel assisted by classical correlations.
Related papers
- Achievability of Covert Quantum Communication [2.2474167740753557]
We show the achievability of a $textitsquare root law$ (SRL) for quantum covert communication similar to that for classical.
We lower bound $M(n)$ with and without assistance from a two-way covert classical channel.
arXiv Detail & Related papers (2025-01-22T18:59:08Z) - Quantum communication and fault-tolerance [0.0]
We are interested in the limits of quantum communication with and without entanglement.
In particular, we are interested in the case where the sender and the receiver share quantum entanglement.
arXiv Detail & Related papers (2024-12-30T06:18:44Z) - Covert Quantum Communication Over Optical Channels [2.094817774591302]
We show a emphsquare root law (SRL) for quantum covert communication similar to that for classical.
Our proof uses photonic dual-rail qubit encoding, which has been proposed for long-range repeater-based quantum communication.
Our converse employs prior covert signal power limit results and adapts well-known methods to upper bound quantum capacity of optical channels.
arXiv Detail & Related papers (2024-01-12T18:54:56Z) - Fault-tolerant Coding for Entanglement-Assisted Communication [46.0607942851373]
This paper studies the study of fault-tolerant channel coding for quantum channels.
We use techniques from fault-tolerant quantum computing to establish coding theorems for sending classical and quantum information in this scenario.
We extend these methods to the case of entanglement-assisted communication, in particular proving that the fault-tolerant capacity approaches the usual capacity when the gate error approaches zero.
arXiv Detail & Related papers (2022-10-06T14:09:16Z) - Classical analogue of quantum superdense coding and communication advantage of a single quantum system [0.0]
We show that a qubit communication without any assistance of classical shared randomness can achieve the goal.
We also study communication utility of a class of non-classical toy systems described by symmetric polygonal state spaces.
arXiv Detail & Related papers (2022-02-14T15:29:59Z) - Quantum Broadcast Channels with Cooperating Decoders: An
Information-Theoretic Perspective on Quantum Repeaters [78.7611537027573]
Communication over a quantum broadcast channel with cooperation between the receivers is considered.
We develop lower and upper bounds on the capacity region in each setting.
arXiv Detail & Related papers (2020-11-18T11:58:48Z) - Secure Two-Party Quantum Computation Over Classical Channels [63.97763079214294]
We consider the setting where the two parties (a classical Alice and a quantum Bob) can communicate only via a classical channel.
We show that it is in general impossible to realize a two-party quantum functionality with black-box simulation in the case of malicious quantum adversaries.
We provide a compiler that takes as input a classical proof of quantum knowledge (PoQK) protocol for a QMA relation R and outputs a zero-knowledge PoQK for R that can be verified by classical parties.
arXiv Detail & Related papers (2020-10-15T17:55:31Z) - Fault-tolerant Coding for Quantum Communication [71.206200318454]
encode and decode circuits to reliably send messages over many uses of a noisy channel.
For every quantum channel $T$ and every $eps>0$ there exists a threshold $p(epsilon,T)$ for the gate error probability below which rates larger than $C-epsilon$ are fault-tolerantly achievable.
Our results are relevant in communication over large distances, and also on-chip, where distant parts of a quantum computer might need to communicate under higher levels of noise.
arXiv Detail & Related papers (2020-09-15T15:10:50Z) - Single-Shot Secure Quantum Network Coding for General Multiple Unicast
Network with Free One-Way Public Communication [56.678354403278206]
We propose a canonical method to derive a secure quantum network code over a multiple unicast quantum network.
Our code correctly transmits quantum states when there is no attack.
It also guarantees the secrecy of the transmitted quantum state even with the existence of an attack.
arXiv Detail & Related papers (2020-03-30T09:25:13Z) - Quantum noise protects quantum classifiers against adversaries [120.08771960032033]
Noise in quantum information processing is often viewed as a disruptive and difficult-to-avoid feature, especially in near-term quantum technologies.
We show that by taking advantage of depolarisation noise in quantum circuits for classification, a robustness bound against adversaries can be derived.
This is the first quantum protocol that can be used against the most general adversaries.
arXiv Detail & Related papers (2020-03-20T17:56:14Z) - Quantum cryptography: Public key distribution and coin tossing [0.3655021726150368]
Uncertainty principle gives rise to novel cryptographic phenomena unachievable with traditional transmission media.
We present a protocol for coin-tossing by exchange of quantum messages, which is secure against traditional kinds of cheating.
Ironically can be subverted by use of a still subtler quantum phenomenon, the Einstein-Podolsky-Rosen paradox.
arXiv Detail & Related papers (2020-03-14T05:15:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.