Classical analogue of quantum superdense coding and communication advantage of a single quantum system
- URL: http://arxiv.org/abs/2202.06796v4
- Date: Thu, 4 Apr 2024 18:58:31 GMT
- Title: Classical analogue of quantum superdense coding and communication advantage of a single quantum system
- Authors: Ram Krishna Patra, Sahil Gopalkrishna Naik, Edwin Peter Lobo, Samrat Sen, Tamal Guha, Some Sankar Bhattacharya, Mir Alimuddin, Manik Banik,
- Abstract summary: We show that a qubit communication without any assistance of classical shared randomness can achieve the goal.
We also study communication utility of a class of non-classical toy systems described by symmetric polygonal state spaces.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We analyze utility of communication channels in absence of any short of quantum or classical correlation shared between the sender and the receiver. To this aim, we propose a class of two-party communication games, and show that the games cannot be won given a noiseless $1$-bit classical channel from the sender to the receiver. Interestingly, the goal can be perfectly achieved if the channel is assisted with classical shared randomness. This resembles an advantage similar to the quantum superdense coding phenomenon where pre-shared entanglement can enhance the communication utility of a perfect quantum communication line. Quite surprisingly, we show that a qubit communication without any assistance of classical shared randomness can achieve the goal, and hence establishes a novel quantum advantage in the simplest communication scenario. In pursuit of a deeper origin of this advantage, we show that an advantageous quantum strategy must invoke quantum interference both at the encoding step by the sender and at the decoding step by the receiver. We also study communication utility of a class of non-classical toy systems described by symmetric polygonal state spaces. We come up with communication tasks that can be achieved neither with $1$-bit of classical communication nor by communicating a polygon system, whereas $1$-qubit communication yields a perfect strategy, establishing quantum advantage over them. To this end, we show that the quantum advantages are robust against imperfect encodings-decodings, making the protocols implementable with presently available quantum technologies.
Related papers
- Distributed quantum machine learning via classical communication [0.7378853859331619]
We present an experimentally accessible distributed quantum machine learning scheme that integrates quantum processor units via classical communication.
Our results indicate that incorporating classical communication notably improves classification accuracy compared to schemes without communication.
arXiv Detail & Related papers (2024-08-29T08:05:57Z) - Quantum-Amplified Simultaneous Quantum-Classical Communications [0.2982610402087727]
We investigate how to minimally alter classical FSO systems to provide some element of quantum communication coexisting with classical communications.
We show how this is indeed the case, but only at the cost of some additional receiver complexity, relative to standalone quantum communications.
arXiv Detail & Related papers (2024-05-15T06:44:01Z) - Operational Nonclassicality in Quantum Communication Networks [9.312605205492458]
We apply an operational framework for witnessing quantum nonclassicality in communication networks.
We demonstrate nonclassicality in many basic networks such as entanglement-assisted point-to-point and multi-point channels.
Our approaches could be implemented on quantum networking hardware and used to automatically establish certain protocols.
arXiv Detail & Related papers (2024-03-05T14:07:37Z) - Quantum Semantic Communications for Resource-Efficient Quantum Networking [52.3355619190963]
This letter proposes a novel quantum semantic communications (QSC) framework exploiting advancements in quantum machine learning and quantum semantic representations.
The proposed framework achieves approximately 50-75% reduction in quantum communication resources needed, while achieving a higher quantum semantic fidelity.
arXiv Detail & Related papers (2022-05-05T03:49:19Z) - Improvement in quantum communication using quantum switch [4.350783459690612]
We show that some useless (for communication) channels may provide useful communication under the action of quantum switch.
We demonstrate that the quantum switch can also be useful in preventing the loss of coherence in a system.
arXiv Detail & Related papers (2021-08-31T17:51:40Z) - Quantum communication complexity beyond Bell nonlocality [87.70068711362255]
Efficient distributed computing offers a scalable strategy for solving resource-demanding tasks.
Quantum resources are well-suited to this task, offering clear strategies that can outperform classical counterparts.
We prove that a new class of communication complexity tasks can be associated to Bell-like inequalities.
arXiv Detail & Related papers (2021-06-11T18:00:09Z) - Direct Quantum Communications in the Presence of Realistic Noisy
Entanglement [69.25543534545538]
We propose a novel quantum communication scheme relying on realistic noisy pre-shared entanglement.
Our performance analysis shows that the proposed scheme offers competitive QBER, yield, and goodput.
arXiv Detail & Related papers (2020-12-22T13:06:12Z) - Secure Two-Party Quantum Computation Over Classical Channels [63.97763079214294]
We consider the setting where the two parties (a classical Alice and a quantum Bob) can communicate only via a classical channel.
We show that it is in general impossible to realize a two-party quantum functionality with black-box simulation in the case of malicious quantum adversaries.
We provide a compiler that takes as input a classical proof of quantum knowledge (PoQK) protocol for a QMA relation R and outputs a zero-knowledge PoQK for R that can be verified by classical parties.
arXiv Detail & Related papers (2020-10-15T17:55:31Z) - Fault-tolerant Coding for Quantum Communication [71.206200318454]
encode and decode circuits to reliably send messages over many uses of a noisy channel.
For every quantum channel $T$ and every $eps>0$ there exists a threshold $p(epsilon,T)$ for the gate error probability below which rates larger than $C-epsilon$ are fault-tolerantly achievable.
Our results are relevant in communication over large distances, and also on-chip, where distant parts of a quantum computer might need to communicate under higher levels of noise.
arXiv Detail & Related papers (2020-09-15T15:10:50Z) - Permutation Enhances Classical Communication Assisted by Entangled
States [67.12391801199688]
We show that the capacity satisfies the strong converse property and thus the formula serves as a sharp dividing line between achievable and unachievable rates of communication.
As examples, we derive analytically the classical capacity of various quantum channels of interests.
arXiv Detail & Related papers (2020-01-07T01:49:31Z) - Beyond Shannon Limits: Quantum Communications through Quantum Paths [7.219077740523682]
We study the quantum capacity achievable via a quantum path and establish upper and the lower bounds for it.
Our findings reveal the substantial advantage achievable with a quantum path over any classical placements of communications channels in terms of ultimate achievable communication rates.
arXiv Detail & Related papers (2019-12-18T13:04:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.