VeLoRA: Memory Efficient Training using Rank-1 Sub-Token Projections
- URL: http://arxiv.org/abs/2405.17991v2
- Date: Mon, 21 Oct 2024 12:53:21 GMT
- Title: VeLoRA: Memory Efficient Training using Rank-1 Sub-Token Projections
- Authors: Roy Miles, Pradyumna Reddy, Ismail Elezi, Jiankang Deng,
- Abstract summary: Large language models (LLMs) have recently emerged as powerful tools for tackling many language-processing tasks.
We identify and characterise the important components needed for effective model convergence using gradient descent.
This result leads us to a cheap and memory-efficient algorithm for both fine-tuning and pre-training LLMs.
- Score: 35.133698935322634
- License:
- Abstract: Large language models (LLMs) have recently emerged as powerful tools for tackling many language-processing tasks. Despite their success, training and fine-tuning these models is still far too computationally and memory intensive. In this paper, we identify and characterise the important components needed for effective model convergence using gradient descent. In doing so we find that the intermediate activations used to implement backpropagation can be excessively compressed without incurring any degradation in performance. This result leads us to a cheap and memory-efficient algorithm for both fine-tuning and pre-training LLMs. The proposed algorithm simply divides the tokens up into smaller sub-tokens before projecting them onto a fixed 1-dimensional subspace during the forward pass. These features are then coarsely reconstructed during the backward pass to implement the update rules. We confirm the effectiveness of our algorithm as being complimentary to many state-of-the-art PEFT methods on the VTAB-1k fine-tuning benchmark. Furthermore, we outperform QLoRA for fine-tuning LLaMA and show competitive performance against other memory-efficient pre-training methods on the large-scale C4 dataset.
Related papers
- Enhancing Zeroth-order Fine-tuning for Language Models with Low-rank Structures [21.18741772731095]
Zeroth-order (ZO) algorithms offer a promising alternative by approximating gradients using finite differences of function values.
Existing ZO methods struggle to capture the low-rank gradient structure common in LLM fine-tuning, leading to suboptimal performance.
This paper proposes a low-rank ZO algorithm (LOZO) that effectively captures this structure in LLMs.
arXiv Detail & Related papers (2024-10-10T08:10:53Z) - Enabling Efficient On-Device Fine-Tuning of LLMs Using Only Inference Engines [17.539008562641303]
Large Language Models (LLMs) are currently pre-trained and fine-tuned on large cloud servers.
Next frontier is LLM personalization, where a foundation model can be fine-tuned with user/task-specific data.
Fine-tuning on resource-constrained edge devices presents significant challenges due to substantial memory and computational demands.
arXiv Detail & Related papers (2024-09-23T20:14:09Z) - SHERL: Synthesizing High Accuracy and Efficient Memory for Resource-Limited Transfer Learning [63.93193829913252]
We propose an innovative METL strategy called SHERL for resource-limited scenarios.
In the early route, intermediate outputs are consolidated via an anti-redundancy operation.
In the late route, utilizing minimal late pre-trained layers could alleviate the peak demand on memory overhead.
arXiv Detail & Related papers (2024-07-10T10:22:35Z) - BlockLLM: Memory-Efficient Adaptation of LLMs by Selecting and Optimizing the Right Coordinate Blocks [19.007090250576585]
BlockLLM is an approach inspired by block coordinate descent.
It achieves state-of-the-art performance in both finetuning and pretraining tasks.
arXiv Detail & Related papers (2024-06-25T05:45:12Z) - Hierarchical Context Merging: Better Long Context Understanding for Pre-trained LLMs [61.40047491337793]
We present Hierarchical cOntext MERging (HOMER), a new training-free scheme designed to overcome the limitations of large language models.
HomeR uses a divide-and-conquer algorithm, dividing long inputs into manageable chunks.
A token reduction technique precedes each merging, ensuring memory usage efficiency.
arXiv Detail & Related papers (2024-04-16T06:34:08Z) - Time-, Memory- and Parameter-Efficient Visual Adaptation [75.28557015773217]
We propose an adaptation method which does not backpropagate gradients through the backbone.
We achieve this by designing a lightweight network in parallel that operates on features from the frozen, pretrained backbone.
arXiv Detail & Related papers (2024-02-05T10:55:47Z) - Winner-Take-All Column Row Sampling for Memory Efficient Adaptation of Language Model [89.8764435351222]
We propose a new family of unbiased estimators called WTA-CRS, for matrix production with reduced variance.
Our work provides both theoretical and experimental evidence that, in the context of tuning transformers, our proposed estimators exhibit lower variance compared to existing ones.
arXiv Detail & Related papers (2023-05-24T15:52:08Z) - Efficient Few-Shot Object Detection via Knowledge Inheritance [62.36414544915032]
Few-shot object detection (FSOD) aims at learning a generic detector that can adapt to unseen tasks with scarce training samples.
We present an efficient pretrain-transfer framework (PTF) baseline with no computational increment.
We also propose an adaptive length re-scaling (ALR) strategy to alleviate the vector length inconsistency between the predicted novel weights and the pretrained base weights.
arXiv Detail & Related papers (2022-03-23T06:24:31Z) - Mesa: A Memory-saving Training Framework for Transformers [58.78933015299703]
We present Mesa, a memory-saving training framework for Transformers.
Mesa uses exact activations during forward pass while storing a low-precision version of activations to reduce memory consumption during training.
Experiments on ImageNet, CIFAR-100 and ADE20K demonstrate that Mesa can reduce half of the memory footprints during training.
arXiv Detail & Related papers (2021-11-22T11:23:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.