1LoRA: Summation Compression for Very Low-Rank Adaptation
- URL: http://arxiv.org/abs/2503.08333v1
- Date: Tue, 11 Mar 2025 11:45:20 GMT
- Title: 1LoRA: Summation Compression for Very Low-Rank Adaptation
- Authors: Alessio Quercia, Zhuo Cao, Arya Bangun, Richard D. Paul, Abigail Morrison, Ira Assent, Hanno Scharr,
- Abstract summary: We study the "very low rank regime", where we fine-tune the lowest amount of parameters per linear layer for each considered PEFT method.<n>We propose 1LoRA, a compute, parameter and memory efficient fine-tuning method which uses the feature sum as fixed compression and a single trainable vector as decompression.
- Score: 6.00844864296448
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Parameter-Efficient Fine-Tuning (PEFT) methods have transformed the approach to fine-tuning large models for downstream tasks by enabling the adjustment of significantly fewer parameters than those in the original model matrices. In this work, we study the "very low rank regime", where we fine-tune the lowest amount of parameters per linear layer for each considered PEFT method. We propose 1LoRA (Summation Low-Rank Adaptation), a compute, parameter and memory efficient fine-tuning method which uses the feature sum as fixed compression and a single trainable vector as decompression. Differently from state-of-the-art PEFT methods like LoRA, VeRA, and the recent MoRA, 1LoRA uses fewer parameters per layer, reducing the memory footprint and the computational cost. We extensively evaluate our method against state-of-the-art PEFT methods on multiple fine-tuning tasks, and show that our method not only outperforms them, but is also more parameter, memory and computationally efficient. Moreover, thanks to its memory efficiency, 1LoRA allows to fine-tune more evenly across layers, instead of focusing on specific ones (e.g. attention layers), improving performance further.
Related papers
- EDoRA: Efficient Weight-Decomposed Low-Rank Adaptation via Singular Value Decomposition [2.5269004336032186]
Efficient Weight-Decomposed Low-Rank Adaptation (EDoRA) is a novel PEFT method that decomposes pre-trained weights into magnitude and directional components.<n>EDoRA achieves competitive or superior performance compared to state-of-the-art methods, such as LoRA and DoRA.
arXiv Detail & Related papers (2025-01-21T11:42:09Z) - ALoRE: Efficient Visual Adaptation via Aggregating Low Rank Experts [71.91042186338163]
ALoRE is a novel PETL method that reuses the hypercomplex parameterized space constructed by Kronecker product to Aggregate Low Rank Experts.
Thanks to the artful design, ALoRE maintains negligible extra parameters and can be effortlessly merged into the frozen backbone.
arXiv Detail & Related papers (2024-12-11T12:31:30Z) - Expanding Sparse Tuning for Low Memory Usage [103.43560327427647]
We propose a method named SNELL (Sparse tuning with kerNELized LoRA) for sparse tuning with low memory usage.
To achieve low memory usage, SNELL decomposes the tunable matrix for sparsification into two learnable low-rank matrices.
A competition-based sparsification mechanism is further proposed to avoid the storage of tunable weight indexes.
arXiv Detail & Related papers (2024-11-04T04:58:20Z) - SparseGrad: A Selective Method for Efficient Fine-tuning of MLP Layers [88.68985153780514]
We propose a new selective PEFT method, namely SparseGrad, that performs well on parameter blocks.
We apply SparseGrad to fine-tune BERT and RoBERTa for the NLU task and LLaMa-2 for the Question-Answering task.
arXiv Detail & Related papers (2024-10-09T19:03:52Z) - LoRTA: Low Rank Tensor Adaptation of Large Language Models [70.32218116940393]
Low Rank Adaptation (LoRA) is a popular Efficient Fine Tuning (PEFT) method.<n>We propose a higher-order Candecomp/Parafac (CP) decomposition, enabling a more compact and flexible representation.<n>Our method can achieve a reduction in the number of parameters while maintaining comparable performance.
arXiv Detail & Related papers (2024-10-05T06:59:50Z) - Flat-LoRA: Low-Rank Adaption over a Flat Loss Landscape [52.98187034726091]
Low-Rank Adaptation (LoRA) is an efficient way to fine-tune models by optimizing only a low-rank matrix.
A solution that appears flat in the LoRA space may exist sharp directions in the full parameter space, potentially harming generalization performance.
We propose Flat-LoRA, an efficient approach that seeks a low-rank adaptation located in a flat region of the full parameter space.
arXiv Detail & Related papers (2024-09-22T11:24:10Z) - Sparse Matrix in Large Language Model Fine-tuning [1.9874264019909988]
We introduce a method for selecting sparse sub-matrices that aim to minimize the performance gap between PEFT vs. full fine-tuning.
In experiments, we demonstrate that our method consistently surpasses other PEFT baselines.
We also examine how the performance of LoRA and DoRA tends to plateau and decline as the number of trainable parameters increases.
arXiv Detail & Related papers (2024-05-24T13:12:14Z) - MoRA: High-Rank Updating for Parameter-Efficient Fine-Tuning [105.11844150736536]
Low-rank adaptation is a popular parameter-efficient fine-tuning method for large language models.
We propose a new method called MoRA, which employs a square matrix to achieve high-rank updating while maintaining the same number of trainable parameters.
Our method outperforms LoRA on memory-intensive tasks and achieves comparable performance on other tasks.
arXiv Detail & Related papers (2024-05-20T15:48:32Z) - IncreLoRA: Incremental Parameter Allocation Method for
Parameter-Efficient Fine-tuning [15.964205804768163]
IncreLoRA is an incremental parameter allocation method that adaptively adds trainable parameters during training.
We conduct extensive experiments on GLUE to demonstrate the effectiveness of IncreLoRA.
arXiv Detail & Related papers (2023-08-23T10:08:10Z) - LoRAPrune: Structured Pruning Meets Low-Rank Parameter-Efficient Fine-Tuning [56.88751562302793]
Low-rank adaption (LoRA) has emerged to fine-tune large language models (LLMs)
LoRAPrune is a new framework that delivers an accurate structured pruned model in a highly memory-efficient manner.
LoRAPrune achieves a reduction in perplexity by 4.81 on WikiText2 and 3.46 on PTB, while also decreasing memory usage by 52.6%.
arXiv Detail & Related papers (2023-05-28T15:15:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.