Coupled Mamba: Enhanced Multi-modal Fusion with Coupled State Space Model
- URL: http://arxiv.org/abs/2405.18014v2
- Date: Wed, 29 May 2024 05:19:15 GMT
- Title: Coupled Mamba: Enhanced Multi-modal Fusion with Coupled State Space Model
- Authors: Wenbing Li, Hang Zhou, Junqing Yu, Zikai Song, Wei Yang,
- Abstract summary: This paper proposes the Coupled SSM model, for coupling state chains of multiple modalities while maintaining independence of intra-modality state processes.
Experiments on CMU-EI, CH-SIMS, CH-SIMSV2 through multi-domain input verify the effectiveness of our model.
Results demonstrate that Coupled Mamba model is capable of enhanced multi-modal fusion.
- Score: 18.19558762805031
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The essence of multi-modal fusion lies in exploiting the complementary information inherent in diverse modalities. However, prevalent fusion methods rely on traditional neural architectures and are inadequately equipped to capture the dynamics of interactions across modalities, particularly in presence of complex intra- and inter-modality correlations. Recent advancements in State Space Models (SSMs), notably exemplified by the Mamba model, have emerged as promising contenders. Particularly, its state evolving process implies stronger modality fusion paradigm, making multi-modal fusion on SSMs an appealing direction. However, fusing multiple modalities is challenging for SSMs due to its hardware-aware parallelism designs. To this end, this paper proposes the Coupled SSM model, for coupling state chains of multiple modalities while maintaining independence of intra-modality state processes. Specifically, in our coupled scheme, we devise an inter-modal hidden states transition scheme, in which the current state is dependent on the states of its own chain and that of the neighbouring chains at the previous time-step. To fully comply with the hardware-aware parallelism, we devise an expedite coupled state transition scheme and derive its corresponding global convolution kernel for parallelism. Extensive experiments on CMU-MOSEI, CH-SIMS, CH-SIMSV2 through multi-domain input verify the effectiveness of our model compared to current state-of-the-art methods, improved F1-Score by 0.4\%, 0.9\%, and 2.3\% on the three datasets respectively, 49\% faster inference and 83.7\% GPU memory save. The results demonstrate that Coupled Mamba model is capable of enhanced multi-modal fusion.
Related papers
- DepMamba: Progressive Fusion Mamba for Multimodal Depression Detection [37.701518424351505]
Depression is a common mental disorder that affects millions of people worldwide.
We propose an audio-visual progressive fusion Mamba for multimodal depression detection, termed DepMamba.
arXiv Detail & Related papers (2024-09-24T09:58:07Z) - GSIFN: A Graph-Structured and Interlaced-Masked Multimodal Transformer-based Fusion Network for Multimodal Sentiment Analysis [0.0]
Multimodal Sentiment Analysis (MSA) leverages multiple data modals to analyze human sentiment.
Existing MSA models generally employ cutting-edge multimodal fusion and representation learning-based methods to promote MSA capability.
Our proposed GSIFN incorporates two main components to solve these problems: (i) a graph-structured and interlaced-masked multimodal Transformer.
It adopts the Interlaced Mask mechanism to construct robust multimodal graph embedding, achieve all-modal-in-one Transformer-based fusion, and greatly reduce the computational overhead.
arXiv Detail & Related papers (2024-08-27T06:44:28Z) - U3M: Unbiased Multiscale Modal Fusion Model for Multimodal Semantic Segmentation [63.31007867379312]
We introduce U3M: An Unbiased Multiscale Modal Fusion Model for Multimodal Semantics.
We employ feature fusion at multiple scales to ensure the effective extraction and integration of both global and local features.
Experimental results demonstrate that our approach achieves superior performance across multiple datasets.
arXiv Detail & Related papers (2024-05-24T08:58:48Z) - Fusion-Mamba for Cross-modality Object Detection [63.56296480951342]
Cross-modality fusing information from different modalities effectively improves object detection performance.
We design a Fusion-Mamba block (FMB) to map cross-modal features into a hidden state space for interaction.
Our proposed approach outperforms the state-of-the-art methods on $m$AP with 5.9% on $M3FD$ and 4.9% on FLIR-Aligned datasets.
arXiv Detail & Related papers (2024-04-14T05:28:46Z) - SurvMamba: State Space Model with Multi-grained Multi-modal Interaction for Survival Prediction [8.452410804749512]
We propose a structured state space model named Mamba with multi-grained multi-modal interaction (SurvMamba) for survival prediction.
SurvMamba is implemented with a Hierarchical Interaction Mamba (HIM) module that facilitates efficient intra-modal interactions at different granularities.
An Interaction Fusion Mamba (IFM) module is used for cascaded inter-modal interactive fusion, yielding more comprehensive features for survival prediction.
arXiv Detail & Related papers (2024-04-11T15:58:12Z) - Unified Multi-modal Unsupervised Representation Learning for
Skeleton-based Action Understanding [62.70450216120704]
Unsupervised pre-training has shown great success in skeleton-based action understanding.
We propose a Unified Multimodal Unsupervised Representation Learning framework, called UmURL.
UmURL exploits an efficient early-fusion strategy to jointly encode the multi-modal features in a single-stream manner.
arXiv Detail & Related papers (2023-11-06T13:56:57Z) - Deep Equilibrium Multimodal Fusion [88.04713412107947]
Multimodal fusion integrates the complementary information present in multiple modalities and has gained much attention recently.
We propose a novel deep equilibrium (DEQ) method towards multimodal fusion via seeking a fixed point of the dynamic multimodal fusion process.
Experiments on BRCA, MM-IMDB, CMU-MOSI, SUN RGB-D, and VQA-v2 demonstrate the superiority of our DEQ fusion.
arXiv Detail & Related papers (2023-06-29T03:02:20Z) - Bi-Bimodal Modality Fusion for Correlation-Controlled Multimodal
Sentiment Analysis [96.46952672172021]
Bi-Bimodal Fusion Network (BBFN) is a novel end-to-end network that performs fusion on pairwise modality representations.
Model takes two bimodal pairs as input due to known information imbalance among modalities.
arXiv Detail & Related papers (2021-07-28T23:33:42Z) - Attention Bottlenecks for Multimodal Fusion [90.75885715478054]
Machine perception models are typically modality-specific and optimised for unimodal benchmarks.
We introduce a novel transformer based architecture that uses fusion' for modality fusion at multiple layers.
We conduct thorough ablation studies, and achieve state-of-the-art results on multiple audio-visual classification benchmarks.
arXiv Detail & Related papers (2021-06-30T22:44:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.