論文の概要: PRFashion24: A Dataset for Sentiment Analysis of Fashion Products Reviews in Persian
- arxiv url: http://arxiv.org/abs/2405.18060v1
- Date: Tue, 28 May 2024 11:19:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-29 18:58:39.250952
- Title: PRFashion24: A Dataset for Sentiment Analysis of Fashion Products Reviews in Persian
- Title(参考訳): PRFashion24:ペルシアにおけるファッション製品レビューの感性分析のためのデータセット
- Authors: Mehrimah Amirpour, Reza Azmi,
- Abstract要約: PRFashion24データセットは、2020年4月から2024年3月まで、さまざまなオンラインファッションストアから収集された包括的なペルシアのデータセットである。
767,272のレビューで、ペルシア語のファッション業界における多様なカテゴリーを含む、この種のデータセットとしては初めてのものである。
- 参考スコア(独自算出の注目度): 0.46040036610482665
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The PRFashion24 dataset is a comprehensive Persian dataset collected from various online fashion stores, spanning from April 2020 to March 2024. With 767,272 reviews, it is the first dataset in its kind that encompasses diverse categories within the fashion industry in the Persian language. The goal of this study is to harness deep learning techniques, specifically Long Short-Term Memory (LSTM) networks and a combination of Bidirectional LSTM and Convolutional Neural Network (BiLSTM-CNN), to analyze and reveal sentiments towards online fashion shopping. The LSTM model yielded an accuracy of 81.23%, while the BiLSTM-CNN model reached 82.89%. This research aims not only to introduce a diverse dataset in the field of fashion but also to enhance the public's understanding of opinions on online fashion shopping, which predominantly reflect a positive sentiment. Upon publication, both the optimized models and the PRFashion24 dataset will be available on GitHub.
- Abstract(参考訳): PRFashion24データセットは、2020年4月から2024年3月まで、さまざまなオンラインファッションストアから収集された包括的なペルシアのデータセットである。
767,272のレビューで、ペルシア語のファッション業界における多様なカテゴリーを含む、この種のデータセットとしては初めてのものである。
本研究の目的は、特にLong Short-Term Memory(LSTM)ネットワークとBidirectional LSTMとConvolutional Neural Network(BiLSTM-CNN)を組み合わせて、オンラインファッションショッピングに対する感情を分析し、明らかにすることである。
LSTMモデルは81.23%、BiLSTM-CNNモデルは82.89%に達した。
本研究は,ファッション分野における多様なデータセットの導入だけでなく,肯定的な感情を反映したオンラインファッションショッピングに対する人々の意見の理解を高めることを目的としている。
公開されると、最適化されたモデルとPRFashion24データセットの両方がGitHubで利用可能になる。
関連論文リスト
- SCAR: Efficient Instruction-Tuning for Large Language Models via Style Consistency-Aware Response Ranking [56.93151679231602]
本研究は、応答スタイルをプレゼンテーションスタイルとコンポジションスタイルに分解する。
SCAR(Style Consistency-Aware Response Ranking)を紹介する。
SCARは、そのレスポンススタイリスティックな一貫性に基づいて、トレーニングセット内の命令-レスポンスペアを優先順位付けする。
論文 参考訳(メタデータ) (2024-06-16T10:10:37Z) - The MuSe 2024 Multimodal Sentiment Analysis Challenge: Social Perception and Humor Recognition [64.5207572897806]
マルチモーダル・センティメント・アナリティクス・チャレンジ (MuSe) 2024は、現代の2つのマルチモーダル・インフルエンスと感情分析の問題に対処する。
Social Perception Sub-Challenge (MuSe-Perception)では、参加者は16種類の個人の社会的属性を予測する。
クロスカルカルカルチャー・ヒューモー検出サブチャレンジ(MuSe-Humor)データセットは、Passau Spontaneous Football Coach Humorデータセット上に拡張される。
論文 参考訳(メタデータ) (2024-06-11T22:26:20Z) - RoBERTa-BiLSTM: A Context-Aware Hybrid Model for Sentiment Analysis [0.0]
本稿では,ロバスト最適化BERT事前学習手法(RoBERTa)とBilong Short-Term Memory(BiLSTM)ネットワークを組み合わせたハイブリッドディープラーニングモデルRoBERTa-BiLSTMを提案する。
RoBERTaは意味のある単語埋め込みベクトルを生成するのに使われ、BiLSTMは長文の文脈意味を効果的に捉えている。
我々は、IMDb、Twitter US Airline、Sentiment140のデータセットを用いて、既存の最先端手法に対して提案したモデルを評価する実験を行った。
論文 参考訳(メタデータ) (2024-06-01T08:59:46Z) - FashionReGen: LLM-Empowered Fashion Report Generation [61.84580616045145]
先進大言語モデル(LLM)に基づく知的ファッション分析・報告システムを提案する。
具体的には、いくつかの重要な手順を備えた効果的なキャットウォーク分析に基づくFashionReGenの提供を試みる。
また、他の領域における工業的重要性を持つより高度なタスクの探索にも刺激を与えている。
論文 参考訳(メタデータ) (2024-03-11T12:29:35Z) - Cross-view Semantic Alignment for Livestreaming Product Recognition [24.38606354376169]
LPR4Mは34のカテゴリをカバーする大規模マルチモーダルデータセットである。
LPR4Mは様々なビデオとノイズモードのペアを含み、長い尾の分布を示す。
クロスビューパッチ間のセマンティックなミスアライメントをペナルティ化するために、新しいパッチ特徴再構成損失を提案する。
論文 参考訳(メタデータ) (2023-08-09T12:23:41Z) - Political Sentiment Analysis of Persian Tweets Using CNN-LSTM Model [0.356008609689971]
ペルシャの政治ツイートの分析感情に機械学習とディープラーニングモデルを提案する。
ParsBERTの埋め込みによるディープラーニングは、機械学習よりも優れている。
論文 参考訳(メタデータ) (2023-07-15T08:08:38Z) - Multimodal Quasi-AutoRegression: Forecasting the visual popularity of
new fashion products [18.753508811614644]
ファッション業界の急速な変化のため、ファッションにおけるトレンド検出は難しい課題である。
コンピュータビジョンネットワークによって抽出されたマルチモーダル多層パーセプトロン処理のカテゴリと視覚的特徴であるMuQARを提案する。
VISUELLEデータセットの比較研究によると、MuQARはWAPEで2.88%、MAEで3.04%の競争力を持つ。
論文 参考訳(メタデータ) (2022-04-08T11:53:54Z) - Style-Hallucinated Dual Consistency Learning for Domain Generalized
Semantic Segmentation [117.3856882511919]
本稿では、ドメインシフトを処理するためのStyle-HAllucinated Dual consistEncy Learning(SHADE)フレームワークを提案する。
SHADEは3つの実世界のデータセットの平均mIoUに対して5.07%と8.35%の精度で改善し、最先端の手法よりも優れています。
論文 参考訳(メタデータ) (2022-04-06T02:49:06Z) - A Deep CNN Architecture with Novel Pooling Layer Applied to Two Sudanese
Arabic Sentiment Datasets [1.1034493405536276]
2-class Sudanese Sentimentデータセットと3-class Sudanese Sentimentデータセットだ。
5つのCNN層と新しいプール層であるMMAからなるCNNアーキテクチャを提案する。
提案したモデルは、既存のサウジセンティメントデータセットと、85.55%と90.01%の精度でMSAホテルアラビアレビューデータセットに適用される。
論文 参考訳(メタデータ) (2022-01-29T21:33:28Z) - Personalized Fashion Recommendation from Personal Social Media Data: An
Item-to-Set Metric Learning Approach [71.63618051547144]
ソーシャルメディアデータからパーソナライズされたファッションレコメンデーションの問題について検討する。
本稿では,ユーザの過去のファッションアイテムと新しいファッションアイテムとの類似性を学習する,アイテムツーセットのメトリック学習フレームワークを提案する。
提案手法の有効性を検証するために,実世界のソーシャルメディアデータセットを収集する。
論文 参考訳(メタデータ) (2020-05-25T23:24:24Z) - Learning Diverse Fashion Collocation by Neural Graph Filtering [78.9188246136867]
本稿では,グラフニューラルネットワークを用いて,フレキシブルなファッションアイテムセットをモデル化する新しいファッションコロケーションフレームワークであるNeural Graph Filteringを提案する。
エッジベクトルに対称演算を適用することにより、このフレームワークは様々な入力/出力を許容し、それらの順序に不変である。
提案手法を,Polyvoreデータセット,Polyvore-Dデータセット,Amazon Fashionデータセットの3つの一般的なベンチマークで評価した。
論文 参考訳(メタデータ) (2020-03-11T16:17:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。