PyTAG: Tabletop Games for Multi-Agent Reinforcement Learning
- URL: http://arxiv.org/abs/2405.18123v1
- Date: Tue, 28 May 2024 12:30:28 GMT
- Title: PyTAG: Tabletop Games for Multi-Agent Reinforcement Learning
- Authors: Martin Balla, George E. M. Long, James Goodman, Raluca D. Gaina, Diego Perez-Liebana,
- Abstract summary: We introduce PyTAG, a framework that supports interacting with a large collection of games implemented in the Tabletop Games framework.
We highlight the challenges tabletop games provide, from a game-playing agent perspective, along with the opportunities they provide for future research.
- Score: 0.41942958779358663
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Modern Tabletop Games present various interesting challenges for Multi-agent Reinforcement Learning. In this paper, we introduce PyTAG, a new framework that supports interacting with a large collection of games implemented in the Tabletop Games framework. In this work we highlight the challenges tabletop games provide, from a game-playing agent perspective, along with the opportunities they provide for future research. Additionally, we highlight the technical challenges that involve training Reinforcement Learning agents on these games. To explore the Multi-agent setting provided by PyTAG we train the popular Proximal Policy Optimisation Reinforcement Learning algorithm using self-play on a subset of games and evaluate the trained policies against some simple agents and Monte-Carlo Tree Search implemented in the Tabletop Games framework.
Related papers
- FightLadder: A Benchmark for Competitive Multi-Agent Reinforcement Learning [25.857375787748715]
We present FightLadder, a real-time fighting game platform, to empower competitive MARL research.
We provide implementations of state-of-the-art MARL algorithms for competitive games, as well as a set of evaluation metrics.
We demonstrate the feasibility of this platform by training a general agent that consistently defeats 12 built-in characters in single-player mode.
arXiv Detail & Related papers (2024-06-04T08:04:23Z) - A Survey on Large Language Model-Based Game Agents [9.892954815419452]
The development of game agents holds a critical role in advancing towards Artificial General Intelligence (AGI)
This paper provides a comprehensive overview of LLM-based game agents from a holistic viewpoint.
arXiv Detail & Related papers (2024-04-02T15:34:18Z) - PyTAG: Challenges and Opportunities for Reinforcement Learning in
Tabletop Games [0.880802134366532]
We introduce PyTAG, a Python API for interacting with the Tabletop Games framework (TAG)
Tag contains a growing set of more than 20 modern tabletop games, with a common API for AI agents.
We present techniques for training RL agents in these games and introduce baseline results after training Proximal Policy optimisation algorithms on a subset of games.
arXiv Detail & Related papers (2023-07-19T11:08:59Z) - SPRING: Studying the Paper and Reasoning to Play Games [102.5587155284795]
We propose a novel approach, SPRING, to read the game's original academic paper and use the knowledge learned to reason and play the game through a large language model (LLM)
In experiments, we study the quality of in-context "reasoning" induced by different forms of prompts under the setting of the Crafter open-world environment.
Our experiments suggest that LLMs, when prompted with consistent chain-of-thought, have great potential in completing sophisticated high-level trajectories.
arXiv Detail & Related papers (2023-05-24T18:14:35Z) - TiZero: Mastering Multi-Agent Football with Curriculum Learning and
Self-Play [19.98100026335148]
TiZero is a self-evolving, multi-agent system that learns from scratch.
It outperforms previous systems by a large margin on the Google Research Football environment.
arXiv Detail & Related papers (2023-02-15T08:19:18Z) - TiKick: Toward Playing Multi-agent Football Full Games from Single-agent
Demonstrations [31.596018856092513]
Tikick is the first learning-based AI system that can take over the multi-agent Google Research Football full game.
To the best of our knowledge, Tikick is the first learning-based AI system that can take over the multi-agent Google Research Football full game.
arXiv Detail & Related papers (2021-10-09T08:34:58Z) - Learning to Play Imperfect-Information Games by Imitating an Oracle
Planner [77.67437357688316]
We consider learning to play multiplayer imperfect-information games with simultaneous moves and large state-action spaces.
Our approach is based on model-based planning.
We show that the planner is able to discover efficient playing strategies in the games of Clash Royale and Pommerman.
arXiv Detail & Related papers (2020-12-22T17:29:57Z) - Design and Implementation of TAG: A Tabletop Games Framework [59.60094442546867]
This document describes the design and implementation of the Tabletop Games framework (TAG)
TAG is a Java-based benchmark for developing modern board games for AI research.
arXiv Detail & Related papers (2020-09-25T07:27:30Z) - The Design Of "Stratega": A General Strategy Games Framework [62.997667081978825]
Stratega is a framework for creating turn-based and real-time strategy games.
The framework has been built with a focus on statistical forward planning (SFP) agents.
We hope that the development of this framework and its respective agents helps to better understand the complex decision-making process in strategy games.
arXiv Detail & Related papers (2020-09-11T20:02:00Z) - Learning from Learners: Adapting Reinforcement Learning Agents to be
Competitive in a Card Game [71.24825724518847]
We present a study on how popular reinforcement learning algorithms can be adapted to learn and to play a real-world implementation of a competitive multiplayer card game.
We propose specific training and validation routines for the learning agents, in order to evaluate how the agents learn to be competitive and explain how they adapt to each others' playing style.
arXiv Detail & Related papers (2020-04-08T14:11:05Z) - Neural MMO v1.3: A Massively Multiagent Game Environment for Training
and Evaluating Neural Networks [48.5733173329785]
We present Neural MMO, a massively multiagent game environment inspired by MMOs.
We discuss our progress on two more general challenges in multiagent systems engineering for AI research: distributed infrastructure and game IO.
arXiv Detail & Related papers (2020-01-31T18:50:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.